Structure of the C-terminal heme-binding domain of THAP domain containing protein 4 from Homo sapiens
Christopher M. Bianchetti
Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
Center for Eukaryotic Structural Genomics, University of Wisconsin, Madison, Wisconsin 53706
Search for more papers by this authorCraig A. Bingman
Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
Center for Eukaryotic Structural Genomics, University of Wisconsin, Madison, Wisconsin 53706
Search for more papers by this authorCorresponding Author
George N. Phillips Jr.
Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
Center for Eukaryotic Structural Genomics, University of Wisconsin, Madison, Wisconsin 53706
Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544===Search for more papers by this authorChristopher M. Bianchetti
Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
Center for Eukaryotic Structural Genomics, University of Wisconsin, Madison, Wisconsin 53706
Search for more papers by this authorCraig A. Bingman
Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
Center for Eukaryotic Structural Genomics, University of Wisconsin, Madison, Wisconsin 53706
Search for more papers by this authorCorresponding Author
George N. Phillips Jr.
Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
Center for Eukaryotic Structural Genomics, University of Wisconsin, Madison, Wisconsin 53706
Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544===Search for more papers by this author
REFERENCES
- 1 Roussigne M,Kossida S,Lavigne AC,Clouaire T,Ecochard V,Glories A,Amalric F,Girard JP. The THAP domain: a novel protein motif with similarity to the DNA-binding domain of P element transposase. Trends Biochem Sci 2003; 28: 66–69.
- 2 Cayrol C,Lacroix C,Mathe C,Ecochard V,Ceribelli M,Loreau E,Lazar V,Dessen P,Mantovani R,Aguilar L,Girard JP. The THAP-zinc finger protein THAP1 regulates endothelial cell proliferation through modulation of pRB/E2F cell-cycle target genes. Blood 2007; 109: 584–594.
- 3 Roussigne M,Cayrol C,Clouaire T,Amalric F,Girard JP. THAP1 is a nuclear proapoptotic factor that links prostate-apoptosis-response-4 (Par-4) to PML nuclear bodies. Oncogene 2003; 22: 2432–2442.
- 4 Balakrishnan MP,Cilenti L,Mashak Z,Popat P,Alnemri ES,Zervos AS. THAP5 is a human cardiac-specific inhibitor of cell cycle that is cleaved by the proapoptotic Omi/HtrA2 protease during cell death. Am J Physiol Heart Circ Physiol 2009; 297: H643–H653.
- 5 Macfarlan T,Kutney S,Altman B,Montross R,Yu JJ,Chakravarti D. Human THAP7 is a chromatin-associated, histone tail-binding protein that represses transcription via recruitment of HDAC3 and nuclear hormone receptor corepressor. J Biol Chem 2005; 280: 7346–7358.
- 6 Zhu C,Li C,Li Y,Zhan Y,Li Y,Xu C,Xu W,Sun HB,Yang X. Cell growth suppression by thanatos-associated protein 11(THAP11) is mediated by transcriptional downregulation of c-Myc. Cell Death Differ 2009; 16: 395–405.
- 7 Fuchs T,Gavarini S,Saunders-Pullman R,Raymond D,Ehrlich ME,Bressman SB,Ozelius LJ. Mutations in the THAP1 gene are responsible for DYT6 primary torsion dystonia. Nat Genet 2009; 41: 286–288.
- 8 Cayrol C,Lacroix C,Mathe C,Ecochard V,Ceribelli M,Loreau E,Lazar V,Dessen P,Mantovani R,Aguilar L,Girard JP. The THAP-zinc finger protein THAP1 regulates endothelial cell proliferation through modulation of pRB/E2F cell-cycle target genes. Blood 2007; 109: 584–594.
- 9 De Souza Santos E,De Bessa SA,Netto MM,Nagai MA. Silencing of LRRC49 and THAP10 genes by bidirectional promoter hypermethylation is a frequent event in breast cancer. Int J Oncol 2008; 33: 25–31.
- 10 Bessière D,Lacroix C,Campagne S,Ecochard V,Guillet V,Mourey L,Lopez F,Czaplicki J,Demange P,Milon A,Girard JP,Gervais V. Structure-function analysis of the THAP zinc finger of THAP1, a large C2CH DNA-binding module linked to Rb/E2F pathways. J Biol Chem 2008; 283: 4352–4363.
- 11 Campagne S,Saurel O,Gervais V,Milon A. Structural determinants of specific DNA-recognition by the THAP zinc finger. Nucleic Acids Res 2010; 38: 3466–3476.
- 12 Gau B,Chu I,Huang M,Yang K,Chiou S,Fan Y,Chen M,Lin J,Chuang C,Huang S,Lee W. Transcripts of enriched germ cells responding to heat shock as potential markers for porcine semen. Theriogenology 2008; 69: 758–766.
- 13 Wu C,Orozco C,Boyer J,Leglise M,Goodale J,Batalov S,Hodge CL,Haase J,Janes J,Huss JW,III,Su AI. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 2009; 10: R130.
- 14 Bianchetti CM,Blouin GC,Bitto E,Olson JS,Phillips GN,Jr. The structure and NO binding properties of the nitrophorin-like heme-binding protein from Arabidopsis thaliana gene locus At1g79260.1. Proteins 2010; 78: 917–931.
- 15 Montfort WR,Weichsel A,Andersen JF. Nitrophorins and related antihemostatic lipocalins from Rhodnius prolixus and other blood-sucking arthropods. Biochim Biophys Acta 2000; 1482: 110–118.
- 16 Jeon WB,Aceti DJ,Bingman CA,Vojtik FC,Olson AC,Ellefson JM,McCombs JE,Sreenath HK,Blommel PG,Seder KD,Burns BT,Geetha HV,Harms AC,Sabat G,Sussman MR,Fox BG,Phillips GN,Jr. High-throughput purification and quality assurance of Arabidopsis thaliana proteins for eukaryotic structural genomics. J Struct Funct Genomics 2005; 6: 143–147.
- 17 Sreenath HK,Bingman CA,Buchan BW,Seder KD,Burns BT,Geetha HV,Jeon WB,Vojtik FC,Aceti DJ,Frederick RO,Phillips GN,Jr,Fox BG. Protocols for production of selenomethionine-labeled proteins in 2-L polyethylene terephthalate bottles using auto-induction medium. Protein Expr Purif 2005; 40: 256–267.
- 18 Thao S,Zhao Q,Kimball T,Steffen E,Blommel PG,Riters M,Newman CS,Fox BG,Wrobel RL. Results from high-throughput DNA cloning of Arabidopsis thaliana target genes using site-specific recombination. J Struct Funct Genomics 2004; 5: 267–276.
- 19 Zolnai Z,Lee PT,Li J,Chapman MR,Newman CS,Phillips GN,Jr,Rayment I,Ulrich EL,Volkman BF,Markley JL. Project management system for structural and functional proteomics: sesame. J Struct Funct Genomics 2003; 4: 11–23.
- 20 Otwinowski Z,Minor W. Processing of X-ray diffraction data collected in oscillation mode. Macromol Crystallogr A 1997; 276: 307–326.
- 21 Grosse-Kunstleve RW,Adams PD. Substructure search procedures for macromolecular structures. Acta Crystallogr 2003; 59(Part 11): 1966–1973.
- 22 Vonrhein C,Blanc E,Roversi P,Bricogne G. Automated structure solution with autoSHARP. Methods Mol Biol 2007; 364: 215–230.
- 23 Emsley P,Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D—Biol Crystallogr 2004; 60: 2126–2132.
- 24 Adams PD,Grosse-Kunstleve RW,Hung LW,Ioerger TR,McCoy AJ,Moriarty NW,Read RJ,Sacchettini JC,Sauter NK,Terwilliger TC. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr 2002; 58(Part 11): 1948–1954.
- 25 Lovell SC,Davis IW,Arendall WB,III,de Bakker PI,Word JM,Prisant MG,Richardson JS,Richardson DC. Structure validation by C-alpha geometry: phi, psi, and C-beta deviation. Proteins: Struct Funct Genetics 2003; 50: 437–450.
- 26 DeLano WL. The PyMOL molecular graphics system. San Carlos, CA: DeLano Scientific LLC; 2002.
- 27 Krissinel E,Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007; 372: 774–797.
- 28 Holm L,Rosenstrom P. Dali server: conservation mapping in 3D. Nucleic Acids Res 2010; 38( Suppl): W545–W549.
- 29 Shepard W,Haouz A,Grana M,Buschiazzo A,Betton JM,Cole ST,Alzari PM. The crystal structure of Rv0813c from Mycobacterium tuberculosis reveals a new family of fatty acid-binding protein-like proteins in bacteria. J Bacteriol 2007; 189: 1899–1904.
- 30 Brune B,von Knethen A,Sandau KB. Nitric oxide (NO): an effector of apoptosis. Cell Death Differ 1999; 6: 969–975.