Characterization of peptides resulting from digestion of human skin elastin with elastase
M. Getie
Institute of Pharmaceutics and Biopharmaceutics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
Search for more papers by this authorC.E.H. Schmelzer
Institute of Pharmaceutics and Biopharmaceutics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
Search for more papers by this authorCorresponding Author
R.H.H. Neubert
Institute of Pharmaceutics and Biopharmaceutics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
Institute of Pharmaceutics and Biopharmaceutics, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, D-06120, Halle (Saale), Germany===Search for more papers by this authorM. Getie
Institute of Pharmaceutics and Biopharmaceutics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
Search for more papers by this authorC.E.H. Schmelzer
Institute of Pharmaceutics and Biopharmaceutics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
Search for more papers by this authorCorresponding Author
R.H.H. Neubert
Institute of Pharmaceutics and Biopharmaceutics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
Institute of Pharmaceutics and Biopharmaceutics, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, D-06120, Halle (Saale), Germany===Search for more papers by this authorAbstract
Several pathological disorders are associated with abnormalities in elastic fibers, which are mainly composed of elastin. Understanding the biochemical basis of such disorders requires information about the primary structure of elastin. Since the acquisition of structural information for elastin is hampered by its extreme insolubility in water or any organic solvent, in this study, human skin elastin was digested with elastase to produce water-soluble peptides. Tandem mass spectrometry (MS/MS) experiments were performed using conventional electrospray ionization (ESI) and nano-ESI techniques coupled with ion trap and quadrupole time-of-flight (qTOF) mass analyzers, respectively. The peptides were identified from the fragment spectra using database searching and/or de novo sequencing. The cleavage sites of the enzyme and, for the first time, the extent and location of proline hydroxylation in human skin elastin were determined. A total of 117 peptides were identified with sequence coverage of 58.8%. It has been observed that 25% of proline residues in the sequenced region are hydroxylated. Elastase cleaves predominantly at the C-terminals of the amino acids Gly, Val, Leu, Ala, and Ile, and to a lesser extent at Phe, Pro, Glu, and Arg. Our results confirm a previous report that human skin elastin lacks amino acid sequences expressed by exon 26A. Proteins 2005. © 2005 Wiley-Liss, Inc.
REFERENCES
- 1 Uitto J. Biochemistry of the elastic fibers in normal connective tissues and its alterations in diseases. J Invest Dermatol 1979; 72(1): 1–10.
- 2 Indik Z, Yeh H, Ornstein-Goldstein N, Sheppard P, Anderson N, Rosenbloom JC, Peltonen L, Rosenbloom J. Alternative splicing of human elastin mRNA indicated by sequence analysis of cloned genomic and complementary DNA. Proc Natl Acad Sci U S A 1987; 84(16): 5680–5684.
- 3 Indik Z, Yoon K, Morrow SD, Cicila G, Rosenbloom J, Ornstein-Goldstein N. Structure of the 3′ region of the human elastin gene: great abundance of Alu repetitive sequences and few coding sequences. Connect Tissue Res 1987; 16(3): 197–211.
- 4 Bressan GM, Argos P, Stanley KK. Repeating structure of chick tropoelastin revealed by complementary DNA cloning. Biochemistry 1987; 26(6): 1497–1503.
- 5 Raju K, Anwar RA. Primary structures of bovine elastin a, b, and c deduced from the sequences of cDNA clones. J Biol Chem 1987; 262(12): 5755–5762.
- 6 Yeh H, Anderson N, Ornstein-Goldstein N, Bashir MM, Rosenbloom JC, Abrams W, Indik Z, Yoon K, Parks W, Mecham R, Rosenbloom J. Structure of the bovine elastin gene and S1 nuclease analysis of alternative splicing of elastin mRNA in the bovine nuchal ligament. Biochemistry 1989; 28(6): 2365–2370.
- 7 Pierce RA, Deak SB, Stolle CA, Boyd CD. Heterogeneity of rat tropoelastin mRNA revealed by cDNA cloning. Biochemistry 1990; 29(41): 9677–9683.
- 8 Salomoni M, Muda M, Zuccato E, Mussini E. High-performance liquid chromatographic determination of desmosine and isodesmosine after phenylisothiocyanate derivatization. J Chromatogr 1991; 572(1–2): 312–316.
- 9 Kaga N, Soma S, Fujimura T, Seyama K, Fukuchi Y, Murayama K. Quantification of elastin cross-linking amino acids, desmosine and isodesmosine, in hydrolysates of rat lung by ion-pair liquid chromatography-mass spectrometry. Anal Biochem 2003; 318(1): 25–29.
- 10 Getie M, Raith K, Neubert RH. LC/ESI-MS analysis of two elastin cross-links, desmosine and isodesmosine, and their radiation-induced degradation products. Biochim Biophys Acta 2003; 1624(1–3): 81–87.
- 11 Biemann K, Scoble HA. Characterization by tandem mass spectrometry of structural modifications in proteins. Science 1987; 237(4818): 992–998.
- 12 Biemann K. Mass spectrometry of peptides and proteins. Annu Rev Biochem 1992; 61: 977–1010.
- 13 Mann M, Wilm M. Electrospray mass spectrometry for protein characterization. Trends Biochem Sci 1995; 20(6): 219–224.
- 14 Wilm M, Shevchenko A, Houthaeve T, Breit S, Schweigerer L, Fotsis T, Mann M. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 1996; 379(6564): 466–469.
- 15 Spengler B. Post-source decay analysis in matrix-assisted laser desorption/ionization mass spectrometry of biomolecules. J Mass Spectrom 1997; 32(10): 1019–1036.
- 16 Hillenkamp F, Karas M, Beavis RC, Chait BT. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem 1991; 63(24): 1193A–1203A.
- 17 Mendes MA, Monson de Souza B, Delazari dos Santos L, Palma MS. Structural characterization of novel chemotactic and mastoparan peptides from the venom of the social wasp Agelaiapallipes pallipes by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 2004; 18(6): 636–642.
- 18
Perkins DN,
Pappin DJ,
Creasy DM,
Cottrell JS.
Probability-based protein identification by searching sequence databases using mass spectrometry data.
Electrophoresis
1999;
20(18):
3551–3567.
10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 19 Mann M, Wilm M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 1994; 66(24): 4390–4399.
- 20
Creasy DM,
Cottrell JS.
Error tolerant searching of uninterpreted tandem mass spectrometry data.
Proteomics
2002;
2(10):
1426–1434.
10.1002/1615-9861(200210)2:10<1426::AID-PROT1426>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 21 Yates JR, 3rd, Eng JK, McCormack AL. Mining genomes: correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases. Anal Chem 1995; 67(18): 3202–3210.
- 22
Shevchenko A,
Chernushevich I,
Ens W,
Standing KG,
Thomson B,
Wilm M,
Mann M.
Rapid 'de novo' peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer.
Rapid Commun Mass Spectrom
1997;
11(9):
1015–1024.
10.1002/(SICI)1097-0231(19970615)11:9<1015::AID-RCM958>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 23 Taylor JA, Johnson RS. Implementation and uses of automated de novo peptide sequencing by tandem mass spectrometry. Anal Chem 2001; 73(11): 2594–2604.
- 24 Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 2003; 17(20): 2337–2342.
- 25 Starcher BC, Galione MJ. Purification and comparison of elastins from different animal species. Anal Biochem 1976; 74(2): 441–447.
- 26 Brink NG, Lewis UJ, Williams DE. Pancreatic elastase: purification, properties, and function. J Biol Chem 1956; 222(2): 705–720.
- 27 Boyd CD, Christiano AM, Pierce RA, Stolle CA, Deak SB. Mammalian tropoelastin: multiple domains of the protein define an evolutionarily divergent amino acid sequence. Matrix 1991; 11(4): 235–241.
- 28 Fazio MJ, Olsen DR, Kauh EA, Baldwin CT, Indik Z, Ornstein-Goldstein N, Yeh H, Rosenbloom J, Uitto J. Cloning of full-length elastin cDNAs from a human skin fibroblast recombinant cDNA library: further elucidation of alternative splicing utilizing exon-specific oligonucleotides. J Invest Dermatol 1988; 91(5): 458–464.
- 29 Karas M, Bahr U, Dulcks T. Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine. Fresenius J Anal Chem 2000; 366(6–7): 669–676.
- 30 Valaskovic GA, Kelleher NL, Little DP, Aaserud DJ, McLafferty FW. Attomole-sensitivity electrospray source for large-molecule mass spectrometry. Anal Chem 1995; 67(20): 3802–3805.
- 31 Schmelzer CEH, Schöps R, Ulbrich-Hofmann R, Neubert RHH, Raith K. Mass spectrometric characterization of peptides derived by peptic cleavage of bovine beta-casein. J Chromatogr A 2004; 1055(1–2): 87–92.
- 32 Saunders NA, Grant ME. Elastin biosynthesis in chick-embryo arteries. Studies on the intracellular site of synthesis of tropoelastin. Biochem J 1984; 221(2): 393–400.
- 33 Reiser K, McCormick RJ, Rucker RB. Enzymatic and nonenzymatic cross-linking of collagen and elastin. Faseb J 1992; 6(7): 2439–2449.
- 34 Rosenbloom J, Abrams WR, Mecham R. Extracellular matrix 4: the elastic fiber. Faseb J 1993; 7(13): 1208–1218.
- 35 Bedell-Hogan D, Trackman P, Abrams W, Rosenbloom J, Kagan H. Oxidation, cross-linking, and insolubilization of recombinant tropoelastin by purified lysyl oxidase. J Biol Chem 1993; 268(14): 10345–10350.
- 36 Akagawa M, Suyama K. Mechanism of formation of elastin crosslinks. Connect Tissue Res 2000; 41(2): 131–141.
- 37 Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Ohara O, Isogai T, Sugano S. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet 2004; 36(1): 40–45.
- 38 Uitto J, Hoffmann HP, Prockop DJ. Synthesis of elastin and procallagen by cells from embryonic aorta. Differences in the role of hydroxyproline and the effects of proline analogs on the secretion of the two proteins. Arch Biochem Biophys 1976; 173(1): 187–200.
- 39 Dunn DM, Franzblau C. Effects of ascorbate on insoluble elastin accumulation and cross-link formation in rabbit pulmonary artery smooth muscle cultures. Biochemistry 1982; 21(18): 4195–4202.
- 40 Sandberg LB, Weissman N, Smith DW. The purification and partial characterization of a soluble elastin-like protein from copper-deficient porcine aorta. Biochemistry 1969; 8(7): 2940–2945.
- 41 Smith DW, Brown DM, Carnes WH. Preparation and properties of salt-soluble elastin. J Biol Chem 1972; 247(8): 2427–2432.
- 42 Urry DW, Sugano H, Prasad KU, Long MM, Bhatnagar RS. Prolyl hydroxylation of the polypentapeptide model of elastin impairs fiber formation. Biochem Biophys Res Commun 1979; 90(1): 194–198.
- 43 Baule VJ, Foster JA. Multiple chick tropoelastin mRNAs. Biochem Biophys Res Commun 1988; 154(3): 1054–1060.
- 44 Fazio MJ, Olsen DR, Kuivaniemi H, Chu ML, Davidson JM, Rosenbloom J, Uitto J. Isolation and characterization of human elastin cDNAs, and age-associated variation in elastin gene expression in cultured skin fibroblasts. Lab Invest 1988; 58(3): 270–277.
- 45 Mecham RP, Broekelmann TJ, Fliszar CJ, Shapiro SD, Welgus HG, Senior RM. Elastin degradation by matrix metalloproteinases. Cleavage-site specificity and mechanisms of elastolysis. J Biol Chem 1997; 272(29): 18071–18076.