The architecture of the binding site in redox protein complexes: Implications for fast dissociation
Corresponding Author
Peter B. Crowley
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. Da República, Apartado 127, 2781 901 Oeiras, Portugal
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. Da República, Apartado 127, 2781 901 Oeiras, Portugal===Search for more papers by this authorMaria Arménia Carrondo
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. Da República, Apartado 127, 2781 901 Oeiras, Portugal
Search for more papers by this authorCorresponding Author
Peter B. Crowley
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. Da República, Apartado 127, 2781 901 Oeiras, Portugal
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. Da República, Apartado 127, 2781 901 Oeiras, Portugal===Search for more papers by this authorMaria Arménia Carrondo
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. Da República, Apartado 127, 2781 901 Oeiras, Portugal
Search for more papers by this authorAbstract
Interprotein electron transfer is characterized by protein interactions on the millisecond time scale. Such transient encounters are ensured by extremely high rates of complex dissociation. Computational analysis of the available crystal structures of redox protein complexes reveals features of the binding site that favor fast dissociation. In particular, the complex interface is shown to have low geometric complementarity and poor packing. These features are consistent with the necessity for fast dissociation since the absence of close packing facilitates solvation of the interface and disruption of the complex. Proteins 2004;55:000–000. © 2004 Wiley-Liss, Inc.
REFERENCES
- 1 Mathews FS, Mauk AG, Moore GR. Protein–protein complexes formed by electron transfer proteins. In: C Kleanthous, editor. Protein–protein recognition. New York: Oxford University Press; 2000. p 60–101.
- 2 Schreiber G, Fersht AR. Interaction of barnase with its polypeptide inhibitor barstar studied by protein engineering. Biochemistry 1993; 32: 5145–5150.
- 3 Bendall DS. Interprotein electron transfer. In: DS Bendall, editor. Protein electron transfer. Oxford, UK: Bios Scientific; 1996. p 43–68.
- 4 Crowley PB, Ubbink M. Close encounters of the transient kind: redox protein interactions in the photosynthetic redox chain investigated by NMR spectroscopy. Acc Chem Res 2003; 36: 723–730.
- 5 McLendon G. Control of biological electron transport via molecular recognition and binding—the velcro model. Struct Bond 1991; 75: 159–174.
- 6 Chothia C, Janin J. Principles of protein–protein recognition. Nature 1975; 256: 705–708.
- 7 Janin J, Chothia C. The structure of protein–protein recognition sites. J Biol Chem 1990; 265: 16027–16030.
- 8 Janin J. Principles of protein–protein recognition from structure to thermodynamics. Biochimie 1995; 77: 497–505.
- 9 Jones S, Thornton JM. Principles of protein–protein interactions. Proc Natl Acad Sci USA 1996; 93: 13–20.
- 10 Jones S, Thornton JM. Analysis of protein–protein interaction sites using surface patches. J Mol Biol 1997; 272: 121–132.
- 11 Tsai CJ, Lin SL, Wolfson HJ, Nussinov R. Studies of protein–protein interfaces: a statistical analysis of the hydrophobic effect. Protein Sci 1997; 6: 1426–1437.
- 12 Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol 1998; 280: 1–9.
- 13 Lo Conte L, Chothia C, Janin J. The atomic structure of protein–protein recognition sites. J Mol Biol 1999; 285: 2177–2198.
- 14 Chakrabarti P, Janin J. Dissecting protein–protein recognition sites. Proteins 2002; 47: 334–343.
- 15 Nooren IMA, Thornton JM. Structural characterisation and functional significance of transient protein–protein interactions. J Mol Biol 2003; 325: 991–1018.
- 16 Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res 2000; 28: 235–242.
- 17 Wodak SJ, Janin J. Structural basis of macromolecular recognition. Adv Protein Chem 2003; 61: 9–73.
- 18 Lambeth JD, Kamin H. Adrenodoxin reductase–adrenodoxin complex—flavin to iron–sulfur electron transfer as the rate limiting step in the NADPH cytochrome c reductase reaction. J Biol Chem 1979; 254: 2766–2774.
- 19 Müller JJ, Lapko A, Bourenkov G, Ruckpaul K, Heinemann U. Adrenodoxin reductase–adrenodoxin complex structure suggests electron transfer path in steroid biosynthesis. J Biol Chem 2001; 276: 2786–2789.
- 20 Onda Y, Matsumura T, Kimata-Ariga Y, Sakakibara H, Sugiyama T, Hase T. Differential interaction of maize root ferredoxin:NADP(+) oxidoreductase with photosynthetic and non-photosynthetic ferredoxin isoproteins. Plant Physiol 2000; 123: 1037–1045.
- 21 Kurisu G, Kusunoki M, Katoh E, Yamazaki T, Teshima K, Onda Y, Kimata-Ariga Y, Hase T. Structure of the electron transfer complex between ferredoxin and ferredoxin–NADP(+) reductase. Nature Struct Biol 2001; 8: 117–121.
- 22 Hurley JK, Fillat MF, Gomez-Moreno C, Tollin G. Electrostatic and hydrophobic interactions during complex formation and electron transfer in the ferredoxin–ferredoxin:NADP(+) reductase system from Anabaena. J Am Chem Soc 1996; 118: 5526–5531.
- 23 Morales R, Charon MH, Kachalova G, Serre L, Medina M, Gomez-Moreno C, Frey M. A redox-dependent interaction between two electron-transfer partners involved in photosynthesis. Embo Rep 2000; 1: 271–276.
- 24 Brooks HB, Davidson VL. Kinetic and thermodynamic analysis of a physiological intermolecular electron-transfer reaction between methylamine dehydrogenase and amicyanin. Biochemistry 1994; 33: 5696–5701.
- 25 Chen LY, Durley RCE, Mathews FS, Davidson VL. Structure of an electron-transfer complex—methylamine dehydrogenase, amicyanin and cytochrome c551. Science 1994; 264: 86–90.
- 26 Moser CC, Dutton PL. Cytochrome c and cytochrome c2 binding-dynamics and electron-transfer with photosynthetic reaction center and other integral membrane redox proteins. Biochemistry 1988; 27: 2450–2461.
- 27 Axelrod HL, Abresch EC, Okamura MY, Yeh AP, Rees DC, Feher G. X-ray structure determination of the cytochrome c2: reaction center electron transfer complex from Rhodobacter sphaeroides. J Mol Biol 2002; 319: 501–515.
- 28 Worrall JAR, Kolczak U, Canters GW, Ubbink M. Interaction of yeast iso-1-cytochrome c with cytochrome c peroxidase investigated by [N-15,H-1] heteronuclear NMR spectroscopy. Biochemistry 2001; 40: 7069–7076.
- 29 Pelletier H, Kraut J. Crystal structure of a complex between electron-transfer partners, cytochrome c peroxidase and cytochrome c. Science 1992; 258: 1748–1755.
- 30 Zhou JS, Hoffman BM. Stern–Volmer in reverse—2:1 stoichiometry of the cytochrome c–cytochrome c peroxidase electron transfer complex. Science 1994; 265: 1693–1696.
- 31 van Amsterdam IMC, Ubbink M, Einsle O, Messerschmidt A, Merli A, Cavazzini D, Rossi GL, Canters GW. Dramatic modulation of electron transfer in protein complexes by cross-linking. Nature Struct Biol 2002; 9: 48–52.
- 32 Wilson EK, Scrutton NS, Colfen H, Harding SE, Jacobsen MP, Winzor DJ. An ultracentrifugal approach to quantitative characterization of the molecular assembly of a physiological electron-transfer complex—the interaction of electron-transferring flavoprotein with trimethylamine dehydrogenase. Eur J Biochem 1997; 243: 393–399.
- 33 Leys D, Basran J, Talfournier F, Sutcliffe MJ, Scrutton NS. Extensive conformational sampling in a ternary electron transfer complex. Nature Struct Biol 2003; 10: 219–225.
- 34 Speck SH, Margoliash E. Characterization of the interaction of cytochrome c and mitochondrial ubiquinol–cytochrome c reductase. J Biol Chem 1984; 259: 1064–1072.
- 35 Lange C, Hunte C. Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c. Proc Natl Acad Sci USA 2002; 99: 2800–2805.
- 36 Davidson VL, Jones LH. Electron transfer from copper to heme within the methylamine dehydrogenase–amicyanin–cytochrome c551i complex. Biochemistry 1996; 35: 8120–8125.
- 37 Buckle AM, Schreiber G, Fersht AR. Protein–protein recognition—crystal structural analysis of a barnase barstar complex at 2.0 Å resolution. Biochemistry 1994; 33: 8878–8889.
- 38 Hubbard SJ, Campbell SF, Thornton JM. Molecular recognition—conformational analysis of limited proteolytic sites and serine proteinase protein inhibitors. J Mol Biol 1991; 220: 507–530.
- 39 McDonald IK, Thornton JM. Satisfying hydrogen bonding potentials in proteins. J Mol Biol 1994; 238: 777–793.
- 40 Richards FM. Interpretation of protein structures—total volume, group volume distributions and packing density. J Mol Biol 1974; 82: 1–14.
- 41 Gerstein M, Tsai J, Levitt M. The volume of atoms on the protein surface: calculated from simulation, using Voronoi polyhedra. J Mol Biol 1995; 249: 955–966.
- 42 Laskowski RA. Surfnet—a program for visualizing molecular surfaces, cavities and intermolecular interactions. J Mol Graphics 1995; 13: 323–330.
- 43 De Rienzo F, Gabdoulline RR, Menziani MC, Wade RC. Blue copper proteins: a comparative analysis of their molecular interaction properties. Protein Sci 2000; 9: 1439–1454.
- 44 Ubbink M, Ejdebäck M, Karlsson BG, Bendall DS. The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure 1998; 6: 323–335.
- 45 Crowley PB, Otting G, Schlarb-Ridley BG, Canters GW, Ubbink M. Hydrophobic interactions in a cyanobacterial plastocyanin–cytochrome f complex. J Am Chem Soc 2001; 123: 10444–10453.
- 46 Mitchell JBO, Nandi CL, McDonald IK, Thornton JM, Price SL. Amino–aromatic interactions in proteins—is the evidence stacked against hydrogen bonding? J Mol Biol 1994; 235: 315–331.
- 47 Berg OG, von Hippel PH. Diffusion controlled macromolecular interactions. Annu Rev Biophys Biophys Chem 1985; 14: 131–160.
- 48
Janin J.
The kinetics of protein–protein recognition.
Proteins
1997;
28:
153–161.
10.1002/(SICI)1097-0134(199706)28:2<153::AID-PROT4>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 49 Sheinerman FB, Norel R, Honig B. Electrostatic aspects of protein–protein interactions. Curr Opin Struct Biol 2000; 10: 153–159.
- 50 Koppenol WH, Margoliash E. The asymmetric distribution of charges on the surface of horse cytochrome c—functional implications. J Biol Chem 1982; 257: 4426–4437.
- 51 Simondsen RP, Weber PC, Salemme FR, Tollin G. Transient kinetics of electron transfer reactions of flavodoxin—ionic strength dependence of semi-quinone oxidation by cytochrome c, ferricyanide and ferric ethylenediaminetetracetic acid and computer modeling of reaction complexes. Biochemistry 1982; 21: 6366–6375.
- 52 Moench SJ, Satterlee JD, Erman JE. Proton NMR and electrophoretic studies of the covalent complex formed by cross-linking yeast cytochrome c peroxidase and horse cytochrome c with a water-soluble carbodiimide. Biochemistry 1987; 26: 3821–3826.
- 53 Caffrey MS, Bartsch RG, Cusanovich MA. Study of the cytochrome c2–reaction center interaction by site directed mutagenesis. J Biol Chem 1992; 267: 6317–6321.
- 54 Kannt A, Young S, Bendall DS. The role of acidic residues of plastocyanin in its interaction with cytochrome f. BBA-Bioenergetics 1996; 1277: 115–126.
- 55 Waldburger CD, Schildbach JF, Sauer RT. Are buried salt-bridges important for protein stability and conformational specificity? Nature Struct Biol 1995; 2: 122–128.
- 56 Elcock AH, Gabdoulline RR, Wade RC, McCammon JA. Computer simulation of protein–protein association kinetics: acetylcholinesterase–fasciculin. J Mol Biol 1999; 291: 149–162.
- 57 Tsai J, Taylor R, Chothia C, Gerstein M. The packing density in proteins: standard radii and volumes. J Mol Biol 1999; 290: 253–266.
- 58 Connolly ML. Computation of molecular volume. J Am Chem Soc 1985; 107: 1118–1124.
- 59 Pattabiraman N, Ward KB, Fleming PJ. Occluded molecular surface: analysis of protein packing. J Mol Recognit 1995; 8: 334–344.
- 60 Word JM, Lovell SC, La Bean TH, Taylor HC, Zalis ME, Presley BK, Richardson JS, Richardson DC. Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J Mol Biol 1999; 285: 1711–1733.
- 61 Pettigrew GW, Moore GR. Cytochromes c: biological aspects. New York: Springer–Verlag; 1987.
- 62 Liang ZX, Nocek JM, Huang K, Hayes RT, Kurnikov IV, Beratan DN, Hoffman BM. Dynamic docking and electron transfer between Zn-myoglobin and cytochrome b5. J Am Chem Soc 2002; 124: 6849–6859.
- 63 Worrall JAR, Liu Y, Crowley PB, Nocek JM, Hoffman BM, Ubbink M. Myoglobin and cytochrome b5: a nuclear magnetic resonance study of a highly dynamic protein complex. Biochemistry 2002; 41: 11721–11730.
- 64 Worrall JAR, Reinle W, Bernhardt R, Ubbink M. Transient protein interactions studied by NMR spectroscopy: the case of cytochrome c and adrenodoxin. Biochemistry 2003; 42: 7068–7076.
- 65 Morelli X, Dolla A, Czjzek M, Palma PN, Blasco F, Krippahl L, Moura JJG, Guerlesquin F. Heteronuclear NMR and soft docking: an experimental approach for a structural model of the cytochrome c553–ferredoxin complex. Biochemistry 2000; 39: 2530–2537.
- 66
Crowley PB,
Rabe KS,
Worrall JAR,
Canters GW,
Ubbink M.
The ternary complex of cytochrome f and cytochrome c: identification of a second binding site and competition for plastocyanin binding.
ChemBioChem
2002;
3:
526–533.
10.1002/1439-7633(20020603)3:6<526::AID-CBIC526>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 67 Crowley PB, Díaz-Quintana A, Molina-Heredia FP, Nieto P, Sutter M, Haehnel W, De la Rosa MA, Ubbink M. The interactions of cyanobacterial cytochrome c6 and cytochrome f, characterized by NMR. J Biol Chem 2002; 277: 48685–48689.
- 68 Wienk H, Maneg O, Lucke C, Pristovsek P, Lohr F, Ludwig B, Ruterjans H. Interaction of cytochrome c with cytochrome c oxidase: an NMR study on two soluble fragments derived from Paracoccus denitrificans. Biochemistry 2003; 42: 6005–6012.
- 69 Crowley PB, Vintonenko N, Bullerjahn GS, Ubbink M. Plastocyanin–cytochrome f interactions: the influence of hydrophobic patch mutations studied by NMR spectroscopy. Biochemistry 2002; 41: 15698–15705.
- 70 Frazão C, Soares CM, Carrondo MA, Pohl E, Dauter Z, Wilson KS, Hérvas M, Navarro JA, De la Rosa MA, Sheldrick GM. Ab-initio determination of the crystal structure of cytochrome c6 and comparison with plastocyanin. Structure 1995; 3: 1159–1169.
- 71
Ullmann GM,
Hauswald M,
Jensen A,
Knapp EW.
Structural alignment of ferredoxin and flavodoxin based on electrostatic potentials: implications for their interactions with photosystem I and ferredoxin–NADP reductase.
Proteins
2000;
38:
301–309.
10.1002/(SICI)1097-0134(20000215)38:3<301::AID-PROT6>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- 72 Kraulis PJ. MOLSCRIPT—a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 1991; 24: 946–950.
- 73 Merritt EA, Bacon DJ. Raster3D: photorealistic molecular graphics. Methods Enzymol 1997; 277: 505–524.