Review on Preparation, Modification and Application of Nano-Calcium Carbonate
Jun Qiu
College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorJing-Wei Lyu
College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorJing-Lei Yang
College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorKai-Bo Cui
College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorHao-Ze Liu
College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorGui-Fang Wang
School of Resources, Environment and Materials, Guangxi University, Nanning, 530004 China
Search for more papers by this authorCorresponding Author
Xiao Liu
College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
State Key Laboratory of Mineral Processing, Beijing, 100070 China
E-mail: [email protected]
Search for more papers by this authorJun Qiu
College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorJing-Wei Lyu
College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorJing-Lei Yang
College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorKai-Bo Cui
College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorHao-Ze Liu
College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorGui-Fang Wang
School of Resources, Environment and Materials, Guangxi University, Nanning, 530004 China
Search for more papers by this authorCorresponding Author
Xiao Liu
College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
State Key Laboratory of Mineral Processing, Beijing, 100070 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Nano-calcium carbonate (nano-CaCO3) is a tiny inorganic filler created in the 1980s. It boasts a high specific surface area, excellent biocompatibility, and nontoxicity. As a result, it finds extensive applications in the rubber, plastic, and paper industries. This paper intends to give a general overview of the preparation process, surface modification, and application of nano-CaCO3. In particular, the preparation process conditions, the characteristics of the prepared nano-CaCO3, the method and mechanism of surface modification, and also the main application research progress of nano-CaCO3 are described comprehensively. This paper has a good guiding effect for the researchers and related staff engaged in the study of nano-CaCO3.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1a) T. Mass, A. J. Giuffre, C. Y. Sun, C. A. Stifler, M. J. Frazier, M. Neder, N. Tamura, C. V. Stan, M. A. Marcus, P. U. P. A. Gilbert, Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E7670; b) A. S. C. Ahm, C. J. Bjerrum, C. L. Blättler, P. K. Swart, J. A. Higgins, Geochim. Cosmochim. Acta. 2018, 236, 140; c) J. W. Morse, R. S. Arvidson, A. Luttge, Chem. Rev. 2007, 107, 342.
- 2a) Y. Boyjoo, V. K. Pareek, J. Liu, J. Mater. Chem. A. 2014, 2, 14270; b) A. Dey, G. de With, N. Sommerdijk, Chem. Soc. Rev. 2010, 39, 397.
- 3a) L. B. Gower, Chem. Rev. 2008, 108, 4551; b) C. Rodriguez-Navarro, K. Kudlacz, O. Cizer, E. Ruiz-Agudo, CrystEngComm 2015, 17, 58.
- 4J. Tian, M. Liu, P. Hu, Y. C. Zhu, X. Zhang, W. L. Gu, T. H. Hu, G. Y. Yue, Conserv. Util. Miner. Resour. 2020, 40, 109.
- 5K. N. Islam, M. E. Ali, M. Z. Bin Abu Bakar, M. Y. Loqman, A. Islam, M. S. Islam, M. M. Rahman, M. Ullah, Powder. Technol. 2013, 246, 434.
- 6P. Fadia, S. Tyagi, S. Bhagat, A. Nair, P. Panchal, H. Dave, S. Dang, S. Singh, 3 Biotech. 2021, 11, 457.
- 7M. H. Azarian, W. Sutapun, Front Mater 2022, 9, 1024977.
10.3389/fmats.2022.1024977 Google Scholar
- 8P. X. Zhao, Y. Tian, J. You, X. Hu, Y. N. Liu, Bioeng. 2022, 9, 691.
- 9C. Q. Li, C. Liang, Z. M. Chen, Y. H. Di, S. L. Zheng, S. Wei, Z. M. Sun, J. Cent. South Univ. 2021, 28, 2589.
- 10Y. Q. Niu, J. H. Liu, C. Aymonier, S. Fermani, D. Kralj, G. Falini, C. H. Zhou, Chem. Soc. Rev. 2022, 51, 7883.
- 11R. L. Diao, Mod. Salt. Chem. Ind. 2020, 47, 19.
- 12A. R. Ibrahim, R. Benoit, X. Suo, X. Y. Li, Y. Huang, G. F. Ma, J. Li, Chem. Eng. Process. 2019, 142, 107549.
- 13L. Sheng, K. Wang, J. Deng, G. W. Chen, G. S. Luo, Curr. Opin. Chem. Eng. 2023, 40, 100917.
10.1016/j.coche.2023.100917 Google Scholar
- 14L. Zheng, Z. X. Wei, R. J. Liu, Inorg. Chem. Ind. 1998, 30, 7.
- 15S. El-Sherbiny, S. M. El-Sheikh, A. Barhoum, Powder Technol. 2015, 279, 290.
- 16S. Q. Lu, P. Q. Lan, S. F. Wu, Ind. Eng. Chem. Res. 2016, 55, 10172.
- 17W. S. Xu, B. Z. He, S. W. Jin, A. G. Xuan, J. Inorg. Mater. 2001, 16, 985.
- 18Q. F. Hu, X. B. Hu, B. S. Liu, Non-Met. Mines. 2002, 25, 42.
- 19J. F. Chen, H. K. Zou, R. J. Liu, X. F. Zeng, Z. G. Shen, Mod. Chem. Ind. 2001, 21, 9.
- 20F. Han, G. Q. Wang, Y. D. Cui, Fine Chem. 2002, 19, 39.
- 21K. Huang, H. Zhou, C. J. Gu, S. Q. Huang, H. L. Huang, X. Q. Xian, D. D. Li, Z. M. Huang, J. Guangxi. Acad. Sci. 2020, 36, 184.
- 22A. D. Trofimov, A. A. Ivanova, M. V. Zyuzin, A. S. Timin, Pharmaceutics 2018, 10, 167.
- 23I. B. Meic, J. Kontrec, D. D. Jurasin, A. Selmani, B. N. Dzakula, N. Maltar-Strmecki, D. M. Lyons, M. Plodinec, M. Ceh, A. Gajovic, M. D. Sikiric, D. Kralj, CrystEngComm 2018, 20, 35.
10.1039/C7CE01693J Google Scholar
- 24N. Rungpin, S. Pavasupree, P. Prasassarakich, S. Poompradub, Polym. Compos. 2015, 36, 1620.
- 25D. B. Trushina, T. V. Bukreeva, M. N. Antipina, Cryst. Growth Des. 2016, 16, 1311.
- 26Y. Mori, T. Enomae, A. Isogai, J. Imaging Sci. Technol. 2010, 54, 020504.
- 27A. M. Yang, Z. Q. Huang, Y. Zhu, Y. S. Han, Z. F. Tong, J. Cryst. Growth. 2021, 571, 126247.
- 28A. S. Kamba, M. Ismail, T. A. T. Ibrahim, Z. A. Zakaria, J. Nanomater. 2013, 2013, 394357.
- 29Q. H. Sun, Y. L. Deng, J. Colloid Interface Sci. 2004, 278, 376.
- 30J. A. Juhasz, S. M. Best, W. Bonfield, Sci. Technol. Adv. Mater. 2010, 11, 014103.
- 31A. I. Hussein, Z. Ab-Ghani, A. N. C. Mat, N. A. Ab Ghani, A. Husein, I. Ab Rahman, Appl. Sci. 2020, 10, 7170.
- 32M. Nakayama, S. Kajiyama, T. Nishimura, T. Kato, Chem. Sci. 2015, 6, 6230.
- 33L. Jiang, J. Zhang, M. P. Wolcott, Polymer 2007, 48, 7632.
- 34A. Barhoum, L. Van Lokeren, H. Rahier, A. Dufresne, G. Van Assche, J. Mater. Sci. 2015, 50, 7908.
- 35Z. Demjén, B. Pukánszky, E. Földes, J. Nagy, J. Colloid Interface Sci. 1997, 190, 427.
- 36Z. Y. Yang, Y. J. Tang, J. H. Zhang, Chalcogenide Lett. 2013, 10, 131.
- 37Z. X. Zhang, Y. Zhou, R. F. Li, H. M. Luo, H. Y. Wang, H. S. Zhan, Mater. Rev. 2023, 37, 162.
- 38L. Zhang, M. F. Luo, S. S. Sun, J. Ma, C. Z. Li, J. Macromol. Sci., Part B: Phys. 2010, 49, 970.
- 39A. M. Zhang, G. Q. Zhao, Y. J. Guan, J. Appl. Polym. Sci. 2013, 127, 2520.
- 40L. Du, Y. J. Wang, G. S. Luo, Particuology 2013, 11, 421.
- 41A. Sarkar, A. K. Ghosh, S. Mahapatra, J. Mater. Chem. A. 2012, 22, 11113.
- 42Y. L. Wang, W. M. J. Eli, L. T. Zhang, H. Y. Gao, Y. F. Liu, P. J. Li, Adv. Powder Technol. 2010, 21, 203.
- 43K. Roy, M. N. Alam, S. K. Mandal, S. C. Debnath, J. Sol-Gel Sci. Technol. 2015, 73, 306.
- 44H. S. Ghari, A. Jalali-Arani, Appl. Clay Sci. 2016, 119, 348.
- 45D. S. Kang, J. S. Han, J. S. Choi, Y. B. Seo, ACS Omega 2020, 5, 15202.
- 46Z. S. Hu, M. H. Shao, H. Y. Li, Q. Cai, C. H. Zhong, X. M. Zhang, Y. L. Deng, Adv. Compos. Mater. 2009, 18, 315.
- 47A. Chatterjee, S. Mishra, Macromol. Res. 2013, 21, 474.
- 48H. J. Mao, B. He, W. Guo, L. Hua, Q. Yang, Polymers 2018, 10, 1160.
- 49L. T. Kang, M. W. Cui, F. Y. Jiang, Y. F. Gao, H. J. Luo, J. J. Liu, W. Liang, C. Y. Zhi, Adv. Energy Mater. 2018, 8, 1801090.
- 50J. A. Beto, Clin. Nutr. Res. 2015, 4, 1059788.
10.7762/cnr.2015.4.1.1 Google Scholar
- 51M. K. Kim, J. A. Lee, M. R. Jo, M. K. Kim, H. M. Kim, J. M. Oh, N. W. Song, S. J. Choi, Nanomaterials 2015, 5, 1938.
- 52X. R. Yu, Y. H. Ma, Z. K. Ma, H. Lian, Z. X. Meng, J. Mater. Sci. 2023, 58, 13762.
- 53J. Y. Park, K. H. Kyung, K. Tsukada, S. H. Kim, S. Shiratori, Polymer 2017, 123, 194.
- 54S. Biradar, P. Ravichandran, R. Gopikrishnan, V. Goornavar, J. C. Hall, V. Ramesh, S. Baluchamy, R. B. Jeffers, G. T. Ramesh, J. Nanosci. Nanotechnol. 2011, 11, 6868.
- 55N. I. Hammadi, Y. Abba, M. N. M. Hezmee, I. S. A. Razak, A. U. Kura, Z. A. Zakaria, In Vitro Cell. Dev. Biol.: Anim. 2017, 53, 896.
- 56Y. Ueno, H. Futagawa, Y. Takagi, A. Ueno, Y. Mizushima, J. Controlled Release. 2005, 103, 93.
- 57S. A. Kamba, M. Ismail, S. H. Hussein-Al-Ali, T. A. T. Ibrahim, Z. A. Zakaria, Molecules 2013, 18, 10580.
- 58H. B. Peng, K. Li, T. Wang, J. Wang, J. Wang, R. R. Zhu, D. M. Sun, S. L. Wang, Nanoscale Res. Lett. 2013, 8, 321.
- 59S. M. Dizaj, M. Barzegar-Jalali, M. H. Zarrintan, K. Adibkia, F. Lotfipour, Expert Opin. Drug Del. 2015, 12, 1649.
- 60K. Szydlowska, M. Tymianski, Cell Calcium 2010, 47, 122.
- 61G. B. Cai, G. X. Zhao, X. K. Wang, S. H. Yu, J. Phys. Chem. C. 2010, 114, 12948.
- 62H. M. Hu, X. W. Li, P. W. Huang, Q. W. Zhang, W. Y. Yuan, J. Environ. Manage. 2017, 203, 1.
- 63J. Blamey, E. J. Anthony, J. Wang, P. S. Fennell, Prog. Energy Combust. Sci. 2010, 36, 260.
- 64H. L. Ping, S. F. Wu, RSC Adv. 2015, 5, 65052.
- 65J. Camiletti, A. M. Soliman, M. L. Nehdi, Mater. Struct. 2013, 46, 881.