Polymer characterization by interaction chromatography
Corresponding Author
Taihyun Chang
Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology, Pohang, 790-784 Korea
Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology, Pohang, 790-784 KoreaSearch for more papers by this authorCorresponding Author
Taihyun Chang
Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology, Pohang, 790-784 Korea
Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology, Pohang, 790-784 KoreaSearch for more papers by this authorAbstract
Liquid chromatography (LC) is a powerful tool for the characterization of synthetic polymers, that are inherently heterogeneous in molecular weight, chain architecture, chemical composition, and microstructure. Of different versions of the LC methods, size exclusion chromatography (SEC) is most commonly used for the molecular weight distribution analysis. SEC separates the polymer molecules according to the size of a polymer chain, a well-defined function of molecular weight for linear homopolymers. The same, however, cannot be said of nonlinear polymers or copolymers. Hence, SEC is ill suited for and inefficient in separating the molecules in terms of chemical heterogeneity, such as differences in chemical composition of copolymers, tacticity, and functionality. For these purposes, another chromatographic method called interaction chromatography (IC) is found as a better tool because its separation mechanism is sensitive to the chemical nature of the molecules. The IC separation utilizes the enthalpic interactions to vary adsorption or partition of solute molecules to the stationary phase. Thus, it is used to separate polymers in terms of their chemical composition distribution or functionality. Further, the IC method has been shown to give rise to much higher resolution over SEC in separating polymers by molecular weight. We present here our recent progress in polymer characterization with this method. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1591-1607, 2005
REFERENCES AND NOTES
- 1 G. B. Barth; J. W. Mays, Eds. Modern Methods of Polymer Characterization; John Wiley & Sons, New York, 1991.
- 2
Mori, S.;Barth, H. G.
Size Exclusion Chromatography;
Springer Verlag:
New York,
1999.
10.1007/978-3-662-03910-6 Google Scholar
- 3 Glöckner, G. Gradient HPLC of Copolymers and Chromatographic Cross-fractionation; Springer Verlag: Berlin, 1992.
- 4 Chang, T. Adv Polym Sci 2003, 163, 1–60.
- 5 Philipsen, H. J. A. J Chromatogr A 2004, 1037, 329–350.
- 6 Casassa, E. F. J Polym Sci Part B 1967, 5, 773–778.
- 7 Grubisic, Z.;Rempp, P.;Benoit, H. J Polym Sci Part B 1967, 5, 753.
- 8 Belenkii, B. G.;Gankina, E. S.;Tennikov, M. B.;Vilenchik, L. Z. Doklady Akad Nauk SSSR 1976, 231, 1147.
- 9 Entelis, S. G.;Evreinov, V. V.;Gorshkov, A. V. Adv Polym Sci 1986, 76, 129–175.
- 10 Berek, D. Macromol Symp 1996, 110, 33–56.
- 11 Pasch, H. Adv Polym Sci 1997, 128, 1–45.
- 12 Lochmüller, C. H.;Moebus, M. A.;Liu, Q. C.;Jiang, C.;Elomaa, M. J Chromatogr Sci 1996, 34, 69–76.
- 13 Cho, D.;Hong, J.;Park, S.;Chang, T. J Chromatogr A 2003, 986, 199–206.
- 14 Cho, D.;Park, S.;Hong, J.;Chang, T. J Chromatogr A 2003, 986, 191–198.
- 15 Gorbunov, A. A.;Skvortsov, A. M. Adv Colloid Interface Sci 1995, 62, 31–108.
- 16 Guttman, C. M.;DiMarzio, E. A.;Douglas, J. F. Macromolecules 1996, 29, 5723–5733.
- 17 Vailaya, A.;Horvath, C. Ind Eng Chem Res 1996, 35, 2964–2981.
- 18 Martin, A. J. P. Biochim Soc Symp 1949, 3, 4.
- 19 Snyder, L. R.;Stadalius, M. A.;Quarry, M. A. Anal Chem 1983, 55, 1413A–1430A.
- 20
Chang, T.;Lee, H. C.;Lee, W.;Park, S.;Ko, C.
Macromol Chem Phys
1999,
200,
2188–2204.
10.1002/(SICI)1521-3935(19991001)200:10<2188::AID-MACP2188>3.0.CO;2-F CAS Web of Science® Google Scholar
- 21 Chang, T.;Lee, W.;Lee, H. C.;Cho, D.;Park, S. Am Lab 2002, 34, 39–41.
- 22 Hatada, K.;Kitayama, T.;Ute, K.;Nishiura, T. J Polym Sci Polym Chem 2004, 42, 416–431.
- 23 Otocka, E. P.;Hellman, M. Y. Macromolecules 1970, 3, 362–365.
- 24 Kamiyama, F.;Matsuda, H.;Inagaki, H. Polym J 1970, 1, 518–523.
- 25 Belenkii, B. G.;Gankina, E. S. J Chromatogr 1970, 53, 3–25.
- 26 Armstrong, D. W.;Bui, K. H. Anal Chem 1982, 54, 706–708.
- 27 Lochmüller, C. H.;McGranaghan, M. B. Anal Chem 1989, 61, 2449–2455.
- 28 Alhedai, A.;Boehm, R. E.;Matire, D. E. Chromatographia 1990, 29, 313–321.
- 29 Shalliker, R. A.;Kavanagh, P. E.;Russell, I. M. J Chromatogr 1991, 543, 157–169.
- 30 Lochmüller, C. H.;Jiang, C.;Elomaa, M. J Chromatogr Sci 1995, 33, 561–567.
- 31 Lee, H. C.;Chang, T. Polymer 1996, 37, 5747–5749.
- 32 Lee, W.;Lee, H. C.;Park, T.;Chang, T.;Chang, J. Y. Polymer 1999, 40, 7227–7231.
- 33 Lee, W.;Lee, H. C.;Chang, T.;Kim, S. B. Macromolecules 1998, 31, 344–348.
- 34
Lee, W.;Lee, H. C.;Park, T.;Chang, T.;Chae, K. H.
Macromol Chem Phys
2000,
201,
320–325.
10.1002/(SICI)1521-3935(20000201)201:3<320::AID-MACP320>3.0.CO;2-4 CAS Web of Science® Google Scholar
- 35 Lee, W.;Cho, D.;Chun, B. O.;Chang, T.;Ree, M. J Chromatogr A 2001, 910, 51–60.
- 36 Lee, W.;Lee, H.;Cha, J.;Chang, T.;Hanley, K. J.;Lodge, T. P. Macromolecules 2000, 33, 5111–5115.
- 37 Kwon, K.;Lee, W.;Cho, D.;Chang, T. Korea Polym J 1999, 7, 321–324.
- 38 Busnel, J. P.;Foucault, F.;Denis, L.;Lee, W.;Chang, T. J Chromatogr A 2001, 930, 61–71.
- 39 Flory, P. J. J Am Chem Soc 1940, 62, 1561.
- 40 Zimm, B. H.;Stockmayer, W. H. J Chem Phys 1949, 17, 1301–1314.
- 41 Lee, H. C.;Chang, T.;Harville, S.;Mays, J. W. Macromolecules 1998, 31, 690–694.
- 42 Perny, S.;Allgaier, J.;Cho, D.;Lee, W.;Chang, T. Macromolecules 2001, 34, 5408–5415.
- 43 Cho, D.; Park, S.;Chang, T.;Avgeropoulos, A.;Hadjichristidis, N. Eur Polym J 2003, 39, 2155–2160.
- 44 Park, S.; Cho, D.;Im, K.;Chang, T.;Uhrig, D.;Mays, J. W. Macromolecules 2003, 36, 5834–5838.
- 45 Im, K.;Park, S.;Cho, D.;Chang, T.;Lee, K.;Choi, N. Anal. Chem. 2004, 76, 2638–2642.
- 46 Frater, D. J.; Mays, J. W.;Jackson, C.;Sioula, S.;Efstradiadis, V.;Hadjichristidis, N. J Polym Sci Polym Phys 1997, 35, 587–594.
- 47 Lee, H. C.;Lee, W.;Chang, T.;Yoon, J. S.;Frater, D. J.;Mays, J. W. Macromolecules 1998, 31, 4114–4119.
- 48 Ryu, J.;Im, K.;Yu, W.;Park, J.;Chang, T.;Lee, K.;Choi, N. Macromolecules 2004, 37, 8805–8807.
- 49 Yun, H.;Olesik, S. V.;Marti, E. H. Anal Chem 1998, 70, 3298–3303.
- 50 Lee, H. C.;Chang, T. Macromolecules 1996, 29, 7294–7296.
- 51 Molander, P.;Greibrokk, T.;Iveland, A.;Ommundsen, E. J. Sep Sci 2001, 24, 136–140.
- 52 Lee, W.;Park, S.;Chang, T. Anal Chem 2001, 73, 3884–3889.
- 53 Janco, M.;Prudskova, T.;Berek, D. J Appl Polym Sci 1995, 55, 393–397.
- 54
Nguyen, S. H.;Berek, D.;Capek, I.;Chiantore, O.
J Polym Sci Polym Chem
2000,
38,
2284–2291.
10.1002/(SICI)1099-0518(20000615)38:12<2284::AID-POLA180>3.0.CO;2-E CAS Web of Science® Google Scholar
- 55 Nguyen, S. H.;Berek, D. Colloid Polym Sci 1999, 277, 318–324.
- 56 Park, S.;Park, I.;Chang, T.;Ryu, C. Y. J Am Chem Soc 2004, 126, 8906–8907.
- 57 van Rooij, G. J.;Duursma, M. C.;de Koster, C. G.;Heeren, R. M. A.;Boon, J. J.;Schuyl, P. J. W.;van der Hage, E. R. E. Anal Chem 1998, 70, 843–850.
- 58 Hong, J. M.;Cho, D.;Chang, T.;Shim, W. S.;Lee, D. S. Macromol Res 2003, 11, 341–346.
- 59
Skvortsov, A. M.;Gorbunov, A. A.
Polym Sci USSR
1979,
21,
371–380.
10.1016/0032-3950(79)90255-7 Google Scholar
- 60 Gankina, E.;Belenkii, B.;Malakhova, I.;Melenevskaya, E.;Zgonnik, V. J. Planar Chromatogr 1991, 4, 199.
- 61 Zimina, T. M.;Kever, J. J.;Melenevskaya, E. Y.;Fell, A. F. J Chromatogr 1992, 593, 233–241.
- 62 Falkenhagen, J.;Much, H.;Stauf, W.;Muller, A. H. E. Macromolecules 2000, 33, 3687–3693.
- 63 Baran, K.;Laugier, S.;Cramail, H. J Chromatogr B 2001, 753, 139–149.
- 64 Pasch, H.; Esser, E.;Kloninger, C.;Iatrou, H.;Hadjichristidis, N. Macromol Chem Phys 2001, 202, 1424–1429.
- 65 Lee, W.;Cho, D.;Chang, T.;Hanley, K. J.;Lodge, T. P. Macromolecules 2001, 34, 2353–2358.
- 66 Park, I.;Park, S.;Cho, D.;Chang, T.;Kim, E.;Lee, K. Y.;Kim, Y. J. Macromolecules 2003, 36, 8539–8543.
- 67 Lee, H.;Lee, W.;Chang, T.;Choi, S.;Lee, D.;Ji, H.;Nonidez, W. K.;Mays, J. W. Macromolecules 1999, 32, 4143–4146.
- 68 Lee, H.;Chang, T.;Lee, D.;Shim, M. S.;Ji, H.;Nonidez, W. K.;Mays, J. W. Anal Chem 2001, 73, 1726–1732.
- 69 Park, S.;Cho, D.;Ryu, J.;Kwon, K.;Lee, W.;Chang, T. Macromolecules 2002, 35, 5974–5979.
- 70 Park, S.;Kwon, K.;Cho, D.;Lee, B.;Ree, M.;Chang, T. Macromolecules 2003, 36, 4662–4666.
- 71 Lee, H. C.;Lee, H.;Lee, W.;Chang, T.;Roovers, J. Macromolecules 2000, 33, 8119–8121.
- 72 Roovers, J.;Toporowski, P. M. Macromolecules 1983, 16, 843–849.
- 73 Cho, D.;Park, S.;Kwon, K.;Chang, T. Macromolecules 2001, 34, 7570–7572.
- 74 Lee, W.;Lee, H.;Lee, H. C.;Cho, D.;Chang, T.;Gorbunov, A. A.;Roovers, J. Macromolecules 2002, 35, 529–538.
- 75 Pasch, H. Adv Polym Sci 2000, 150, 1–66.
- 76 Park, S.;Cho, D.;Ryu, J.;Kwon, K.;Chang, T.;Park, J. J Chromatogr A 2002, 958, 183–189.
- 77 Cheng, H. N.;Kasehagen, L. J. Macromolecules 1993, 26, 4774–4782.
- 78 Lewis, J. J.;Rogers, L. B.;Pauls, R. E. J Chromatogr 1983, 264, 339–356.
- 79 Mourey, T. H.;Smith, G. A.;Snyder, L. R. Anal Chem 1984, 56, 1773–1777.
- 80 Pasch, H.;Hiller, W.;Haner, R. Polymer 1998, 39, 1515–1523.
- 81 Sweeney, A. P.;Wormell, P.;Shalliker, R. A. Macromol Chem Phys 2002, 203, 375–380.
- 82 Inagaki, H.;Miyamoto, T.;Kamiyama, F. Polym Lett 1969, 7, 329.
- 83 Sato, H.;Sasaki, M.;Ogino, K. Polym J 1989, 21, 965–969.
- 84 Cho, D.;Park, S.;Chang, T.;Ute, K.;Fukuda, I.;Kitayama, T. Anal Chem 2002, 74, 1928–1931.
- 85 Kitayama, T.;Janco, M.;Ute, K.;Niimi, R.;Hatada, K.;Berek, D. Anal Chem 2000, 72, 1518–1522.
- 86 Janco, M.;Hirano, T.;Kitayama, T.;Hatada, K.;Berek, D. Macromolecules 2000, 33, 1710–1715.
- 87 Cho, D.;Park, I.;Chang, T.;Ute, K.;Fukuda, I.;Kitayama, T. Macromolecules 2002, 35, 6067–6069.
- 88 Trathnigg, B. Prog Polym Sci 1995, 20, 615–650.
- 89 Berek, D. Prog Polym Sci 2000, 25, 873–908.