Semi-interpenetrating polymer networks composed of poly(N-isopropyl acrylamide) and polyacrylamide hydrogels
Jasna Djonlagić
Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia and Montenegro
Search for more papers by this authorCorresponding Author
Zoran S. Petrović
Kansas Polymer Research Center, Pittsburg State University, Pittsburg, Kansas, 66762
Kansas Polymer Research Center, Pittsburg State University, Pittsburg, Kansas, 66762Search for more papers by this authorJasna Djonlagić
Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia and Montenegro
Search for more papers by this authorCorresponding Author
Zoran S. Petrović
Kansas Polymer Research Center, Pittsburg State University, Pittsburg, Kansas, 66762
Kansas Polymer Research Center, Pittsburg State University, Pittsburg, Kansas, 66762Search for more papers by this authorAbstract
Three series of semi-interpenetrating polymer networks, based on crosslinked poly(N-isopropyl acrylamide) (PNIPA) and 1 wt % nonionic or ionic (cationic and anionic) linear polyacrylamide (PAAm), were synthesized to improve the mechanical properties of PNIPA gels. The effect of the incorporation of linear polymers into responsive networks on the temperature-induced transition, swelling behavior, and mechanical properties was studied. Polymer networks with four different crosslinking densities were prepared with various molar ratios (25:1 to 100:1) of the monomer (N-isopropyl acrylamide) to the crosslinker (methylenebisacrylamide). The hydrogels were characterized by the determination of the equilibrium degree of swelling at 25 °C, the compression modulus, and the effective crosslinking density, as well as the ultimate hydrogel properties, such as the tensile strength and elongation at break. The introduction of cationic and anionic linear hydrophilic PAAm into PNIPA networks increased the rate of swelling, whereas the presence of nonionic PAAm diminished it. Transition temperatures were significantly affected by both the crosslinking density and the presence of linear PAAm in the hydrogel networks. Although anionic PAAm had the greatest influence on increasing the transition temperature, the presence of nonionic PAAm caused the highest dimensional change. Semi-interpenetrating polymer networks reinforced with cationic and nonionic PAAm exhibited higher tensile strengths and elongations at break than PNIPA hydrogels, whereas the presence of anionic PAAm caused a reduction in the mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3987–3999, 2004
REFERENCES AND NOTES
- 1 Tanaka, T. Sci Am 1981, 244, 124–138.
- 2 Shibayama, M.; Morimoto, M.; Nomura, S. Macromolecules 1994, 27, 5060–5066.
- 3 Schild, H. G. Prog Polym Sci 1992, 17, 163–249.
- 4 Sasaki, S.; Koga, S. Macromolecules 2002, 35, 857–860.
- 5 Dušek, K. Responsive Gels: Volume Transition I; Springer-Verlag: New York, 1993.
- 6 Dušek, K. Responsive Gels: Volume Transition II; Springer-Verlag: New York, 1993.
- 7 Osada, Y.; Kajiwara, K. Gel Handbook; Academic: San Diego, 2001.
- 8 Qiu, Y.; Park, K. Adv Drug Delivery Rev 2001, 53, 321–339.
- 9 Hoffman, A. S. Adv Drug Delivery Rev 2002, 43, 3–12.
- 10 Osada, Y.; Okuzaki, H.; Hori, H. Nature 1992, 355, 242–244.
- 11 Serizawa, T.; Wakita, K.; Mitsuri, A. Macromolecules 2002, 35, 10–12.
- 12 Zhang, X.-Z.; Zhuo, R.-X. Eur Polym J 2000, 36, 2301–2303.
- 13 Kabra, B. G.; Gehrke, S. H. Polym Commun 1991, 32, 322–323.
- 14 Wu, X. S.; Hoffman, A. S.; Yager, P. J Polym Sci Part A: Polym Chem 1992, 30, 2121–2129.
- 15 Yan, Q.; Hoffman, A. S. Polymer 1995, 36, 887–889.
- 16 Ebara, M.; Aoyagi, T.; Sakai, K.; Okano, T. Macromolecules 2000, 33, 8312–8316.
- 17 Yu, H.; Grainger, D. W. Macromolecules 1994, 27, 4554–4560.
- 18 Feil, H.; Bae, Y. H.; Feijen, J.; Kim, S. W. Macromolecules 1993, 26, 2496–2500.
- 19
Kishi, R.
Energy Conversion;
Academic:
San Diego,
2001.
10.1016/B978-012394690-4/50090-6 Google Scholar
- 20 Bae, Y. H.; Okano, T.; Kim, S. W. Pharm Res 1991, 8, 531–537.
- 21 Bae, Y. H.; Okano, T.; Kim, S. W. Pharm Res 1991, 8, 624–628.
- 22 Stile, R. A.; Healy, K. E. Biomacromolecules 2002, 3, 591–600.
- 23 Xia, X.; Hu, Z. Langmuir 2004, 20, 2094–2098.
- 24 Diez-Peňa; Quijada-Garrido, I.; Frutos, P.; Barrales-Rienda, J. M. Macromolecules 2002, 35, 2667–2675.
- 25 Kaneko, Y.; Nakamura, S.; Sakai, K.; Kikuchi, A.; Aoyagi, T.; Sakurai, Y.; Okano, T. Polym Gels Networks 1998, 6, 333–345.
- 26 Kim, S. J.; Lee, K. L.; Lee, Y. M.; Lee, K. B.; Park, Y. O.; Kim, S. I. J Appl Polym Sci 2003, 90, 3922–3036.
- 27 Kim, S. J.; Park, S. J.; Kim, S. I. React Funct Polym 2003, 55, 61–67.
- 28 Ju, H. K.; Kim, S. Y.; Lee, Y. M. Polymer 2001, 42, 6851–6857.
- 29 Guilherme, M. R.; Toledo, E. A.; Rubera, A. F.; Muniz, E. C. J Membr Sci 2002, 210, 129–136.
- 30 Dhara, D.; Rathna, G. V. N.; Chatterji, P. R. Langmuir 2000, 16, 2424–2429.
- 31 Kabra, B. G.; Gehrke, S. H. U.S. Patent 6,030,442, 2000.
- 32 Marsano, E.; Bianchi, E.; Viscardi, A. Polymer 2004, 45, 157–163.
- 33 Kaneko, Y.; Sakai, K.; Kikuchi, A.; Yochida, R.; Sakurai, Y.; Okano, T. Macromolecules 1995, 28, 7717–7723.
- 34 Zhang, X. Z.; Chu, C. C. J Appl Polym Sci 2003, 89, 1935–1941.
- 35 Zhang, X. Z.; Wu, D.-Q.; Chu, C. C. Biomaterials 2004, 25, 3793–3805.
- 36 Zhang, J. T.; Huang, S. W.; Chenh, S. X.; Zhuo, R. X. J Polym Sci Part A: Polym Chem 2004, 42, 1249–1254.
- 37 Gehrke, S. H.; Palasis, M.; Akhtar, M. K. Polym Int 1992, 29, 29–36.
- 38 Xue, W.; Champs, S.; Huglin, M. B. Polymer 2001, 42, 3665–3669.
- 39 Gundogan, N.; Melekaslan, D.; Okay, O. Macromolecules 2002, 35, 5616–5622.
- 40 Tagikawa, T.; Yamawaka, T.; Takahashi, K.; Masuda, T. Polym Gels Networks 1997, 5, 584.
- 41 Zaroslov, Y. D.; Philippova, E. O.; Khokhlov, R. A. Macromolecules 1999, 32, 1508–1513.
- 42 Zhang, J.; Peppas, A. Macromolecules 2000, 33, 102–107.
- 43 Gutowska, A.; Bae, Y. H.; Jacobs, H.; Feijen, J.; Kim, S. W. Macromolecules 1994, 27, 4167–4175.
- 44 Shin, B. C.; Jhon, M. S.; Lee, H. B.; Yuk, S. H. Eur Polym J 1998, 34, 1675–1681.
- 45 Shin, B. C.; Jhon, M. S.; Lee, H. B.; Yuk, S. H. Eur Polym J 1998, 34, 171–174.
- 46 Maolin, Z.; Jun, L.; Min, Y.; Hongfei, H. Radiat Phys Chem 2000, 58, 397–400.
- 47 Muniz, E. C.; Geuskens, G. Macromolecules 2001, 34, 4480–4484.
- 48 Gehrke, S. H. In Responsive Gels: Volume Transition; K. Dušek, Ed.; Springer-Verlag: New York, 1993; pp 81–145.
- 49 Rathjen, C. M.; Park, C. H.; Goodrich, P. R.; Walgenbach, D. D. Polym Gels Networks 1995, 3, 101–115.
- 50 Kong, H. J.; Wong, E.; Mooney, D. J. Macromolecules 2003, 36, 4582–4588.
- 51 Flory, P. J.; Rehner, J. J Chem Phys 1943, 11, 521–526.
- 52 Petrović, Z. S.; MacKnight, W. J.; Koningsveld, R.; Dušek, K. Macromolecules 1987, 20, 1088–1096.
- 53 Johnson, B.; Niedermaier, D. J.; Crone, W. C.; Moorthy, J.; Beebe, D. J. SEM Annual Conference Proceedings, Milwaukee, WI, June 10–12, 2002; Society of Experimental Mechanics: Bethel, CT, 2002.
- 54 Obukhov, S. P.; Rubinstein, M.; Colby, R. H. Macromolecules 1994, 27, 3191–3198.
- 55 Dubrovski, S. A. Polym Gels Networks 1996, 4, 467–480.
- 56
Chun, H.;
Gent, A. N.
J Polym Sci Part B: Polym Phys
1996,
34,
2223–2229.
10.1002/(SICI)1099-0488(19960930)34:13<2223::AID-POLB11>3.0.CO;2-7 CAS Web of Science® Google Scholar
- 57 Gent, A. N.; Tobias, R. H. J Polym Sci Polym Sci Ed 1982, 20, 2051–2058.
- 58 Ahagon, A.; Gent, A. N. J Polym Sci Polym Phys Ed 1975, 13, 1903–1911.
- 59 Lake, G. J.; Thomas, A. G. Proc R Soc London Ser A 1967, 300, 108–119.