Supramolecular star polymers with compositional heterogeneity
Ikhlas Gadwal
Department of Materials, ETH-Zürich, CH-8093 Zürich, Switzerland
Search for more papers by this authorSwati De
Department of Materials, ETH-Zürich, CH-8093 Zürich, Switzerland
Search for more papers by this authorMihaiela C. Stuparu
Institute of Organic Chemistry, University of Zürich, CH-8057 Zürich, Switzerland
Search for more papers by this authorRoey J. Amir
Materials Research Laboratory, University of California, Santa Barbara, California 93106
Search for more papers by this authorSe Gyu Jang
Materials Research Laboratory, University of California, Santa Barbara, California 93106
Search for more papers by this authorCorresponding Author
Anzar Khan
Department of Materials, ETH-Zürich, CH-8093 Zürich, Switzerland
Department of Materials, ETH-Zürich, CH-8093 Zürich, SwitzerlandSearch for more papers by this authorIkhlas Gadwal
Department of Materials, ETH-Zürich, CH-8093 Zürich, Switzerland
Search for more papers by this authorSwati De
Department of Materials, ETH-Zürich, CH-8093 Zürich, Switzerland
Search for more papers by this authorMihaiela C. Stuparu
Institute of Organic Chemistry, University of Zürich, CH-8057 Zürich, Switzerland
Search for more papers by this authorRoey J. Amir
Materials Research Laboratory, University of California, Santa Barbara, California 93106
Search for more papers by this authorSe Gyu Jang
Materials Research Laboratory, University of California, Santa Barbara, California 93106
Search for more papers by this authorCorresponding Author
Anzar Khan
Department of Materials, ETH-Zürich, CH-8093 Zürich, Switzerland
Department of Materials, ETH-Zürich, CH-8093 Zürich, SwitzerlandSearch for more papers by this authorAbstract
We present the synthesis of supramolecular star polymers with heterogeneous chemical compositions through potassium cation-templated assembly of guanosine end-functionalized random, diblock, and Y-shaped copolymers. The assembly and disassembly processes of the synthesized star polymers have been systematically examined on changing the concentration, the temperature, the solvent, and the amount of cation using 1H NMR, UV/vis, and CD spectroscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
POLA_25956_sm_SuppInfo.pdf6.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES AND NOTES
- 1(a) Todd, E. M.; Zimmerman, S. C. J. Am. Chem. Soc. 2007, 129, 14534–14535; (b) Todd, E. M.; Zimmerman, S. C. Tetrahedron 2008, 64, 8558–8570.
- 2(a) Hoogenboom, R.; Schubert, U. S. Chem. Soc. Rev. 2006, 35, 622–629, and references therein; (b) Hoogenboom, R.; Wouters, D.; Schubert, U. S. Macromolecules 2003, 36, 4743–4749; (c) Hoogenboom, R.; Moore, B. C.; Schubert, U. S. Chem. Commun. 2006, 4010–4012.
- 3(a) Fraser, C. L.; Smith A. P. J. Polym. Sci, Part A: Polym. Chem. 2000, 38, 4704–4716, and references therein; (b) Fraser, C. L.; Smith, A. P.; Wu, X. J. Am. Chem. Soc. 2000, 122, 9026–9027; (c) Wu, X.; Collins, J. E.; McAlvin, J. E.; Cutts, R. W.; Fraser, C. L. Macromolecules 2001, 34, 2812–2821.
- 4 Huang, F.; Nagvekar, D. S.; Slebodnick, C.; Gibson, H. W. J. Am. Chem. Soc. 2005, 127, 484–485.
- 5 Chen, S.; Bertrand, A.; Chang, X.; Alcouffe, P.; Ladaviere, C.; Gerard, J.-F.; Lortie, F.; Bernard, J. Macromolecules 2010, 43, 5981–5988.
- 6 Altintas, O.; Tuncab, U.; Barner-Kowollik, C. Polym. Chem. 2011, 2, 1146–1155.
- 7 For elegant work on the synthesis, self-assembly, and thermo-responsiveness of AB-type of diblock copolymers connected via quadruple hydrogen bonding interactions, see: (a) Feldman, K. E.; Kade, M. J.; De Greef, T. F. A.; Meijer, E. W.; Kramer, E. J.; Hawker, C. J. Macromolecules 2008, 41, 4694–4700; (b) Feldman, K. E.; Kade, M. J.; Meijer, E. W.; Hawker, C. J.; Kramer, E. J. Macromolecules 2010, 43, 5121–5127; (c) De Greef, T. F. A.; Kade, M. J.; Feldman, K. E.; Kramer, E. J.; Hawker, C. J.; Meijer, E. W. J. Polym. Sci, Part A: Polym. Chem. 2011, 49, 4253–4260.
- 8(a) Gellert, M.; Lipsett, M.; Davies, D. Proc. Natl. Acad. Sci. USA 1962, 48, 2013–2018; (b) Pinnavaia, T.; Marshall, C.; Mettler, C.; Fisk, C.; Miles, H.; Becker, E. J. J. Am. Chem. Soc. 1978, 100, 3625–3627; (c) Gottarelli, G.; Masiero, S.; Spada, G. P. J. Chem. Soc. Chem. Commun. 1995, 2555–2557; (d) Marlow, A. L.; Mezzina, E.; Spada, G. P.; Masiero, S.; Davis, J. T.; Gottarelli, G. J. Org. Chem. 1999, 64, 5116–5123; (e) Forman, S. L.; Fettinger, J. C.; Pieraccini, S.; Gottarelli, G.; Davis, J. T. J. Am. Chem. Soc. 2000, 122, 4060–4067; (f) Betancourt, J. E.; Rivera, J. M. J. Am. Chem. Soc. 2009, 131, 16666–16668; (g) González-Rodríguez, D.; Van Dongen, J. L. J.; Lutz, M.; Spek, A. L.; Schenning, A. P. H. J.; Meijer, E. W. Nat. Chem. 2009, 1, 151–155; (h) Kaucher, M. S.; Lam, Y.-F.; Pieraccini, S.; Gottarelli, G.; Davis, J. T. Chem. Eur. J. 2005, 11, 164–173.
- 9(a) Davis, J. T. Angew. Chem. Int. Ed. Engl. 2004, 43, 668–698; (b) Spada, G. P.; Gottarelli, G. Synlett 2004, 4, 596–602; (c) Davis, J. T.; Spada, G. P. Chem. Soc. Rev. 2007, 36, 296–313; (d) Lena, S.; Masiero, S.; Pieraccini, S.; Spada, G. S. Mini-Rev. Org. Chem. 2008, 5, 262–273; (e) Lena, S.; Masiero, S.; Pieraccini, S.; Spada, G. S. Chem. Eur. J. 2009, 15, 7792–7806.
- 10 Likhitsup, A.; Yu, S.; Ng, Y.-H.; Chai, C. L. L.; Tam, E. K. W. Chem. Commun. 2009, 4070–4072.
- 11 Y-shaped polymers have been used to create beautiful organic-inorganic nano-architectures: (a) Zubarev, E. R.; Xu, J.; Sayyad, A.; Gibson, J. D. J. Am. Chem. Soc. 2006, 128, 4958–4959; (b) Zubarev, E. R.; Xu, J.; Sayyad, A.; Gibson, J. D. J. Am. Chem. Soc. 2006, 128, 15098–15099.
- 12(a) Cai, Y.; Burguiere, C.; Armes, S. P. Chem. Commun. 2004, 802–803; (b) Cai, Y.; Tang, Y.; Armes, S. P. Macromolecules 2004, 37, 9728–9737.
- 13(a) Giorni, T.; Grepioni, F.; Manet, I.; Mariani, P.; Masiero, S.; Mezzina, E.; Pieraccini, S.; Saturni, L.; Spada, G. P.; Gottarelli, G. Chem. Eur. J. 2002, 8, 2143–2152; (b) Lena, S.; Brancolini, G.; Gottarelli, G.; Mariani, P.; Masiero, S.; Venturini, A.; Pandoli, O.; Pieraccini, S.; Samori, P.; Spada, G. P. Chem. Eur. J. 2007, 13, 3757–3764; (c) Kumar, A. M. S.; Sivakova, S.; Fox, J. D.; Green, J. E.; Marchant, R. E.; Rowan, S. J. J. Am. Chem. Soc. 2008, 130, 1466–1476; (d) Spada, G. P.; Lena, S.; Masiero, S.; Pieraccini, S.; Surin, M.; Samori, P. Adv. Mater. 2008, 20, 2433–2438; (e) Ciesielski, A.; Lena, S.; Masiero, S.; Spada, G. P.; Samori, P. Angew. Chem. Int. Ed. Engl. 2010, 49, 1963–1966.
- 14 For use of UV/Vis technique as a tool to study G-quartet formation in oligonucleotides see: Mergny, J.-L.; Phan, A.-T.; Lacroix, L. FEBS Lett. 1998, 435, 74–78.
- 15 Harada, N.; Nakanishi, K. Circular Dichroic Spectroscopy-Exciton Coupling in Organic Stereochemistry; University Science Book: Mill Valley CA, 1983.
- 16(a) Masiero, S.; Trotta, R.; Pi, S.; Tito, S. D.; Perone, R.; Randazzo, A.; Spada, G. P. Org. Biomol. Chem. 2010, 8, 2683–2692; (b) Gottarelli, G.; Spada, G. P. Circular Dichroism–Principles and Applications; K. Nakanishi; N. Berova; R. W. Woody, Eds.; Wiley: Weinheim, 1994; 105–119; (c) Bonazzi, S.; Capobianco, M.; Miranda De Morais, M.; Garbesi, A.; Gottarelli, G.; Mariani, P.; Ponzi Bossi, M. G.; Spada, G. P.; Tondelli, L. J. Am. Chem. Soc. 1991, 113, 5809–5816; (d) Sakai, N.; Matile, S. Chirality 2003, 15, 766–771; (e) Hennig, A.; Matile, S. Chirality 2008, 20, 932–937.
- 17(a) Obert, E.; Bellot, M.; Bouteiller, L.; Andrioletti, F.; Lehen-Ferrenbach, C.; Bouè, F. J. Am. Chem. Soc. 2007, 129, 15601–15605; (b) Yoshikawa, I.; Sawayama, J.; Araki, K. Angew. Chem. Int. Ed. Engl. 2008, 47, 1038–1041; (c) de Greef, T. F. A.; Nieuwenhuizen, M. M. L.; Stals, P. J. M.; Fitiè, C. F. C.; Palmans, A. R. A.; Sijbesma, R. P.; Meijer, E. W. Chem. Commun. 2008, 4306–4308.