Intramolecular friedel-crafts cyclization and subsequent hydrogenation of styrene-isoprene random copolymers prepared by anionic polymerization for thermally-resistant and optical applications
Atsuhiro Nakahara
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Kurashiki Research Center, Kuraray Co. Ltd, 2045-1, Sakazu, Kurashiki, Okayama 710-0801, Japan
Search for more papers by this authorKotaro Satoh
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Search for more papers by this authorHiromu Saito
Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan
Search for more papers by this authorCorresponding Author
Masami Kamigaito
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, JapanSearch for more papers by this authorAtsuhiro Nakahara
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Kurashiki Research Center, Kuraray Co. Ltd, 2045-1, Sakazu, Kurashiki, Okayama 710-0801, Japan
Search for more papers by this authorKotaro Satoh
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Search for more papers by this authorHiromu Saito
Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan
Search for more papers by this authorCorresponding Author
Masami Kamigaito
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, JapanSearch for more papers by this authorAbstract
To synthesize novel thermally and optically high-performing thermoplastics from commodity monomers, random styrene (St)-isoprene (Ip) rubbers (r-SIRs) prepared by anionic copolymerization were subjected to intramolecular Friedel-Crafts cyclization and subsequent hydrogenation via a sequence of simple postpolymerization modifications. The CF3SO3H-catalyzed Friedel-Crafts alkylation of r-SIR afforded cyclized r-SIR (C-r-SIR) via the predominant formation of bicyclic tetrahydronaphthyl units to give thermoplastics with a high glass transition temperature (Tg ∼130 °C), good mechanical properties, and good transparency. Subsequent hydrogenation of the small amount of remaining CC double bonds in the uncyclized Ip units and cyclized Ip-Ip units yielded hydrogenated C-r-SIR (HC-r-SIR) and increased the degradation temperature by about 15 °C (Td5 ≥ 380 °C). These HC-r-SIRs display good flexural moduli and strength, good transparency, and refractive indices similar to those of C-r-SIR. The birefringence of HC-r-SIR was successfully tuned by adjusting the comonomer content to obtain near-zero birefringence high-performance plastics. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012
REFERENCES AND NOTES
- 1(a)
Swift, G.;
Carraher, C. E.Jr.;
Bowman, C. N.
Polymer Modification;
Plenum: New York,
1997;
10.1007/978-1-4899-1477-4 Google Scholar(b) Meister, J. Polymer Modification: Principles, Techniques, and Applications; Marcel Dekker: New York, 2000.10.1201/9781482269819 Google Scholar
- 2(a) Gaylord, N. G.; Matyska, B. J. Polym. Sci. Part A-1 1966, 4, 2493–2511; 2 (b) Gaylord, N. G. J. Polym. Sci. Part A-1 1968, 6, 125–135; 2 (c) Corner, T.; Foster, R. G.; Hepworth, P. Polymer 1969, 10, 393–397; 2 (d) Cesca, S.; Priola, A.; Santi, G. J. Polym. Sci. Part B: Polym. Lett. 1970, 8, 573–584; 2 (e) Thomas, L.; Polton, A.; Tardi, M.; Sigwalt, P. Macromolecules 1992, 25, 5886–5892; 2 (f) Ouchi, M.; Kamigaito, M.; Sawamoto, M. Macromolecules 2001, 34, 3176–3181; 2 (g) Ouchi, M.; Kamigaito, M.; Sawamoto, M. Macromolecules 2001, 34, 6586–6591; 2 (h) Kanaoka, S.; Ikeda, N.; Tanaka, A.; Yamaoka, H.; Higashimura, T. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 2449–2457; 2 (i) Peetz, R. M.; Moustafa, A. F.; Kennedy, J. P. J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 732–739; j (j) Mizuno, N.; Satoh, K.; Kamigaito, M.; Okamoto, Y., J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 6214–6225.
- 3(a) Natori, I. Macromolecules 1997, 30, 3696–3697; (b) Natori, I.; Inoue, S. Macromolecules 1998, 31, 982–987; (c) Natori, I.; Inoue, S. Macromolecules 1998, 31, 4687–4694.
- 4(a) Ruchatz, D.; Fink, G. Macromolecules 1998, 31, 4669–4673; (b) Chu, P. P.; Huang, W. J.; Chang, F. C.; Fan, S. Y. Polymer 2000, 41, 401–404; (c) Coates, G. W. Chem. Rev. 2000, 100, 1223–1252; (d) Janiak, C.; Lassahn, P. G. J. Mol. Catal. A 2001, 166, 193–209; (e) Kiesewetter, J.; Kaminsky, W. Chem.-A Eur. J. 2003, 9, 1750–1758; (f) Adrien, R.; Lavoie, A. R.; Waymouth, R. M. Tetrahedron 2004, 60, 7147–7155; (g) Tritto, I.; Boggioni, L.; Ferro, D. R. Coord. Chem. Rev. 2006, 250, 212–241.
- 5(a) Gilliom, L. R.; Grubbs, R. H. J. Am. Chem. Soc. 1986, 108, 733–742; (b) Schrock, R. R. Acc. Chem. Res. 1990, 23, 158–165; (c) Bazan, G. C.; Schrock, R. R.; Cho, H. N.; Gibson, V. C. Macromolecules 1991, 24, 4495–4502; (d) Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 3974–3975; (e) Inoue, T.; Takiguchi, O.; Osaki, K.; Kohara, T.; Natsuume, T. Polym. J. 1994, 26, 133–139; (f) Inoue, T.; Okamoto, H.; Osaki, K.; Kohara, T.; Natsuume, T. Polym. J. 1995, 27, 943–950; (g) Yamazaki, M. J. Mol. Cat. A 2004, 213, 81–87.
- 6 Butler, G. B. Cyclopolymerization and Cyclocopolymerization; M. Dekker: New York, 1992.
- 7 Coates, G. W.; Grubbs, R. H. J. Am. Chem. Soc. 1996, 118, 229–230.
- 8(a) Van Veersen, G. J. J. Polym. Sci. 1951, 6, 29–32; (b) Patterson, D. J.; Koenig, J. L. Makromol. Chem. 1987, 188, 2325–2337; (c) Riyajan, S.; Liaw, D.-J.; Tanaka, Y.; Sakdapipanich, J. T. J. Appl. Polym. Sci. 2007, 105, 664–672.
- 9(a) Golub, M. A.; Heller, J. Can. J. Chem. 1963, 41, 937–953; (b) Agnihotri, R. K.; Falcon, D.; Fredericks, E. C. J. Polym. Sci. Part A-1 1972, 10, 1839–1850; (c) Kaszas, G.; Puskas, J. E.; Kennedy, J. P. J. Appl. Polym. Sci. 1990, 39, 119–144; (d) Lal, J. Polymer 1998, 39, 6183–6186.
- 10(a) Tanaka, Y.; Sato, H.; Gonzalez, I. G. J. Polym. Sci. Polym. Chem. Ed. 1979, 17, 3027–3029; (b) Priola, A.; Bruzzone, M.; Mistrali, F.; Cesca, S. Angew. Makromol. Chem. 1980, 18, 21–35; (c) Abdel-Razik, E. A. Polymer 1988, 29, 1704–1708; (d) Wang, C. Mater. Chem. Phys. 2005, 89, 116–121.
- 11
Shangxian, Y.;
Lin, L.;
Jiangnan, G.;
Cuihua, S.;
Jiliang, W.
J. Photopolym. Sci. Technol.
1993,
6,
7–14.
10.2494/photopolymer.6.7 Google Scholar
- 12 Wang, C.; Huang, X.; Yang, J. Eur. Polym. J. 2001, 37, 1895–1899.
- 13 Nakahara, A.; Satoh, K.; Kamigaito, M. Macromolecules 2009, 42, 620–625.
- 14 Nakahara, A.; Satoh, K.; Kamigaito, M. Polym. Chem. 2012, 3, 190–197.
- 15 Holden, G.; Legge, N. R.; Quirk, R.; Schroeder, H. E. Thermoplastic Elastomers, 2nd ed.; Hanser Publishers: Munich, 1996.
- 16 Kohara, T. Macromol. Symp. 1996, 101, 571–579.
- 17(a) Hahn, B. R.; Wendorf, J. H. Polymer 1985, 28, 1619–1622; (b) Saito, H.; Inoue, T. J. Polym. Sci. Part B: Polym. Phys. 1987, 25, 1629–1636.
- 18(a) Iwata, S.; Tsukahara, H.; Nihei, E.; Koike, Y. Appl. Opt. 1997, 36, 4549–4555; (b) Tagaya, A.; Ohkita, H.; Harada, T.; Ishibashi, K.; Koike, Y. Macromolecules, 2006, 39, 3019–3023; (c) Ban, H. T.; Hagihara, H.; Nishi, K.; Tsunogae, Y.; Nojima, S.; Shiono, T. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 7395–7400.
- 19(a) Takahashi, S.; Saito, H. Macromolecules 2004, 37, 1062–1066; (b) Shimizu, K.; Saito, H. J. Polym. Sci. Part B: Polym. Phys. 2009, 47, 715–723.
- 20(a) Gan, S. N.; Subramaniam, N.; Yahya, R. J. Appl. Polym. Sci. 1996, 59, 63–70; (b) Abata, S. S.; Hetflejs, J. J. Appl. Polym. Sci. 2002, 85, 1185–1193; (c) Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis, Wiley-Interscience, New York, 2001.
- 21(a) Hsieh, H. L. J. Polym. Sci. Part A 1965, 3, 153–161; (b) Morton, M. Anionic Polymerization, Principles and Practice; Academic Press: New York, 1983; (c) Hsieh, H. L.; Quirk, R. P. Anionic Polymerization: Principles and Practical Applications (Plastics Engineering Series); M. Dekker: New York, 1996.
- 22(a) Golub, M. A.; Gargiulo, R. J. J. Polym. Sci. Part B: Polym. Lett. 1972, 10, 41–49; (b) Chiantore, O.; Guaita, M.; Lazzari, M.; Hadjichristidis, N.; Pitsikalis, M. Polym. Degrad. Stab. 1995, 49, 385–392.
- 23 Bicerano, J. Prediction of Polymer Properties; Marcel Dekker: New York, 2002.
- 24 Krishnaswamy, R. K.; Janzen, J. Polym. Test. 2005, 24, 762–765.
- 25 Inoue, T.; Mizukami, Y.; Okamoto, H.; Matsui, H.; Watanabe, H.; Kanaya, T.; Osaki, K. Macromolecules 1996, 29, 6240–6245.
- 26 The photoelastic coefficient (Δn/σ) was found to increase with the extent of cyclization, that is, the proportion of bicyclic tetrahydronaphthyl units. For example, HC-r-SIR (Mn = 99,900, Fst = 47 mol %, 93% hydrogenation) with moderate cyclization (59%) showed a negative photoelastic coefficient (Δn/σ = –6.6 × 10−10 Pa−1), whereas Δn/σ increased and became positive (Δn/σ = 3.0 × 10−10 Pa−1) for HC-r-SIR (Mn = 73,600, Fst = 47 mol %, 94% hydrogenation) originating from the same r-SIR but with higher cyclization (91%).