End group transformations of RAFT-generated polymers with bismaleimides: Functional telechelics and modular block copolymers
Ming Li
Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314
Search for more papers by this authorPriyadarsi De
Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314
Search for more papers by this authorSudershan R. Gondi
Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314
Search for more papers by this authorCorresponding Author
Brent S. Sumerlin
Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314
Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314Search for more papers by this authorMing Li
Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314
Search for more papers by this authorPriyadarsi De
Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314
Search for more papers by this authorSudershan R. Gondi
Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314
Search for more papers by this authorCorresponding Author
Brent S. Sumerlin
Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314
Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314Search for more papers by this authorAbstract
End group activation of polymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization was accomplished by conversion of thiocarbonylthio end groups to thiols and subsequent reaction with excess of a bismaleimide. Poly(N-isopropylacrylamide) (PNIPAM) was prepared by RAFT, and subsequent aminolysis led to sulfhydryl-terminated polymers that reacted with an excess of 1,8-bismaleimidodiethyleneglycol to yield maleimido-terminated macromolecules. The maleimido end groups allowed near-quantitative coupling with model low molecular weight thiols or dienes by Michael addition or Diels-Alder reactions, respectively. Reaction of maleimide-activated PNIPAM with another thiol-terminated polymer proved an efficient means of preparing block copolymers by a modular coupling approach. Successful end group functionalization of the well-defined polymers was confirmed by combination of UV–vis, FTIR, and NMR spectroscopy and gel permeation chromatography. The general strategy proved to be versatile for the preparation of functional telechelics and modular block copolymers from RAFT-generated (co)polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5093–5100, 2008
REFERENCES AND NOTES
- 1 Hawker, C. J.;Bosman, A. W.;Harth, E. Chem Rev 2001, 101, 3661–3688.
- 2 Matyjaszewski, K.;Xia, J. Chem Rev 2001, 101, 2921–2990.
- 3 Kamigaito, M.;Ando, T.;Sawamoto, M. Chem Rev 2001, 101, 3689–3745.
- 4 Chiefari, J.;Chong, Y. K.;Ercole, F.;Krstina, J.;Jeffery, J.;Le, T. P. T.;Mayadunne, R. T. A.;Meijs, G. F.;Moad, C. L.;Moad, G.;Rizzardo, E.;Thang, S. H. Macromolecules 1998, 31, 5559–5562.
- 5 Moad, G.;Rizzardo, E.;Thang, S. H. Aust J Chem 2005, 58, 379–410.
- 6 Perrier, S.;Takolpuckdee, P. J Polym Sci Part A: Polym Chem 2005, 43, 5347–5393.
- 7 Favier, A.;Charreyre, M. T. Macromol Rapid Commun 2006, 27, 653–692.
- 8 Barner-Kowollik, C.;Buback, M.;Charleux, B.;Coote, M. L.;Drache, M.;Fukuda, T.;Goto, A.;Klumperman, B.;Lowe, A. B.;Mcleary, J. B.;Moad, G.;Monteiro, M. J.;Sanderson, R. D.;Tonge, M. P.;Vana, P. J Polym Sci Part A: Polym Chem 2006, 44, 5809–5831.
- 9 Moad, G.;Chong, Y. K.;Postma, A.;Rizzardo, E.;Thang, S. H. Polymer 2005, 46, 8458–8468.
- 10 Perrier, S.;Takolpuckdee, P.;Mars, C. A. Macromolecules 2005, 38, 2033–2036.
- 11 Sinnwell, S.;Inglis, A. J.;Davis, T. P.;Stenzel, M.H.;Barner-Kowollik, C.; Chem Commun 2008, 2052–2054.
- 12 Scales, C. W.;Convertine, A. J.;McCormick, C. L. Biomacromolecules 2006, 7, 1389–1392.
- 13 Lowe, A. B.;Sumerlin, B. S.;Donovan, M. S.;McCormick, C. L. J Am Chem Soc 2002, 124, 11562–11563.
- 14 Sumerlin, B. S.;Lowe, A. B.;Stroud, P. A.;Zhang, P.;Urban, M. W.;McCormick, C. L. Langmuir 2003, 19, 5559–5562.
- 15 Vogt, A. P.;Gondi, S. R.;Sumerlin, B. S. Aust J Chem 2007, 60, 396–399.
- 16 Gemici, H.;Legge, T. M.;Whittaker, M.;Monteiro, M. J.;Perrier, S. J Polym Sci Part A: Polym Chem 2007, 45, 2334–2340.
- 17 Lou, X. D.;Zhang, G. H.;Herrera, I.;Kinach, R.;Ornatsky, O.;Baranov, V.;Nitz, M.;Winnik, M. A. Angew Chem Int Ed 2007, 46, 6111–6114.
- 18 Nakayama, M.;Okano, T. Biomacromolecules 2005, 6, 2320–2327.
- 19 Williams, S. R.;Mather, B. D.;Miller, K. M.;Long, T. E. J Polym Sci Part A: Polym Chem 2007, 45, 4118–4128.
- 20 Khire, V. S.;Benoit, D. S. W.;Anseth, K. S.;Bowman, C. N. J Polym Sci Part A: Polym Chem 2006, 44, 7027–7039.
- 21 Mather, B. D.;Viswanathan, K.;Miller, K. M.;Long, T. E. Prog Polym Sci 2006, 31, 487–531.
- 22 Lima, V.;Jiang, X.;Brokken-Zijp, J.;Schoenmakers, P. J.;Klumperman, B.;Van Der Linde, R. J Polym Sci Part A: Polym Chem 2005, 43, 959–973.
- 23 Qiu, X.-P.;Winnik, F. M. Macromol Rapid Commun 2006, 27, 1648–1653.
- 24 Narain, R.;Gonzales, M.;Hoffman, A. S.;Stayton, P. S.;Krishnan, K. M. Langmuir 2007, 23, 6299–6304.
- 25 Schilli, C. M.;Mueller, A. H. E.;Rizzardo, E.;Thang, S. H.;Chong, Y. K. In Advances in Controlled/Living Radical Polymerization; K. Matyjaszewski, Ed.; American Chemical Society: Washington, DC, 2003; pp 603–618.
- 26 Whittaker, M. R.;Goh, Y.-K.;Gemici, H.;Legge, T. M.;Perrier, S.;Monteiro, M. J. Macromolecules 2006, 39, 9028–9034.
- 27 Ghosh, S. S.;Kao, P. M.;McCue, A. W.;Chappelle, H. L. Bioconjugate Chem 1990, 1, 71–76.
- 28 Hermanson, G. T. Bioconjugate Techniques; Academic Press: San Diego, 1996.
- 29 Gacal, B.;Durmaz, H.;Tasdelen, M. A.;Hizal, G.;Tunca, U.;Yagci, Y.;Demirel, A. L. Macromolecules 2006, 39, 5330–5336.
- 30
Kolb, H. C.;Finn, M. G.;Sharpless, K. B.
Angew Chem Int Ed
2001,
40,
2004–2021.
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 31 Gondi, S. R.;Vogt, A. P.;Sumerlin, B. S. Macromolecules 2007, 40, 474–481.
- 32 Vogt, A. P.;Sumerlin, B. S. Macromolecules 2006, 39, 5286–5292.
- 33 Lai, J. T.;Filla, D.;Shea, R. Macromolecules 2002, 35, 6754–6756.
- 34 Cambre, J. N.;Roy, D.;Gondi, S. R.;Sumerlin, B. S. J Am Chem Soc 2007, 129, 10348–10349.
- 35 De, P.;Gondi, S. R.;Sumerlin, B. S. Biomacromolecules 2008, 9, 1064–1070.
- 36 Li, M.;De, P.;Gondi, S. R.;Sumerlin, B. S. Macromol Rapid Commun, in press.
- 37 Roy, D.;Cambre, J. N.;Sumerlin, B. S. Chem Commun 2008, 2477–2479.
- 38 McCormick, C. L.;Sumerlin, B. S.;Lokitz, B. S.;Stempka, J. E. Soft Matter, in press.
- 39 Kujawa, P.;Segui, F.;Shaban, S.;Diab, C.;Okada, Y.;Tanaka, F.;Winnik, F. M. Macromolecules 2006, 39, 341–348.
- 40 You, Y.-Z.;Hong, C.-Y.;Pan, C.-Y. Macromol Rapid Commun 2002, 23, 776–780.
- 41 Opsteen, J. A.;Van Hest, J. C. M. Chem Commun 2005, 57–59.
- 42 Cotiuga, I.;Picchioni, F.;Agarwal, U. S.;Staal, B. B. P.;Vekemans, J. A. J. M.;Lemstra, P. J. Macromol Rapid Commun 2006, 27, 242–246.
- 43 Urbani, C. N.;Bell, C. A.;Lonsdale, D. E.;Whittaker, M. R.;Monteiro, M. J. Macromolecules 2007, 40, 7056–7059.