The translocation of a polymer through a nanopore with sandglass-like geometry
Jun-Lin Qian
Department of Applied Physics, Zhejiang University of Technology, Hangzhou, China
Search for more papers by this authorHaibin Li
Department of Applied Physics, Zhejiang University of Technology, Hangzhou, China
Search for more papers by this authorCorresponding Author
Li-Zhen Sun
Department of Applied Physics, Zhejiang University of Technology, Hangzhou, China
Correspondence
Li-Zhen Sun, Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China.
Email: [email protected]
Search for more papers by this authorJun-Lin Qian
Department of Applied Physics, Zhejiang University of Technology, Hangzhou, China
Search for more papers by this authorHaibin Li
Department of Applied Physics, Zhejiang University of Technology, Hangzhou, China
Search for more papers by this authorCorresponding Author
Li-Zhen Sun
Department of Applied Physics, Zhejiang University of Technology, Hangzhou, China
Correspondence
Li-Zhen Sun, Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China.
Email: [email protected]
Search for more papers by this authorAbstract
In recent years, non-uniformly geometrical nanopores, such as conical nanopores, have gained significant attention in nanopore sensing technology due to their advantages in analyte manipulation and clear output signals. This paper focuses on the polymer translocation through a sandglass-like nanopore, characterized by a double-conical geometry with a tip at the middle. We systematically investigate the effects of pore geometry on the translocation dynamics through computational simulations and theoretical analyses. The polymer translocation process is divided into three stages: approaching, threading, escaping, corresponding to the movement from the entry to the tip, through the tip, and from the tip to the exit, respectively. Our findings reveal that the duration of the approaching stage highly depends on the polymer conformations, while the durations of the threading and escaping stages are primarily influenced by the driving force associated with the pore geometry and the accompanying free energy change. Additionally, we report a relationship between the threading speed of the polymer at the tip and the combination of the driving force there and the free energy change during the threading stage.
Graphical Abstract
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Supporting Information
Filename | Description |
---|---|
pol20230466-sup-0001-Supinfo.pdfPDF document, 128.3 KB | Data S1: Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1J. Bustamante, J. Hanover, A. Liepins, J. Membr. Biol. 1995, 146, 239.
- 2V. R. Lingappa, J. Chaidez, C. S. Yost, J. Hedgpeth, Proc. Natl. Acad. Sci. U. S. A. 1984, 81, 456.
- 3J. J. Kasianowicz, E. Brandin, D. Branton, D. W. Deamer, Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 13770.
- 4A. Meller, J. Phys. Condens. Matter 2003, 15, R581.
- 5C. Dekker, Nat. Nanotechnol. 2007, 2, 209.
- 6D. Branton, D. W. Deamer, A. Marziali, H. Bayley, S. A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, S. B. Jovanovich, P. S. Krstic, S. Lindsay, X. S. Ling, C. H. Mastrangelo, A. Meller, J. S. Oliver, Y. V. Pershin, J. M. Ramsey, R. Riehn, G. V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, J. A. Schloss, Nat. Biotechnol. 2008, 26, 1146.
- 7M. Zwolak, M. Di Ventra, Rev. Mod. Phys. 2008, 80, 141.
- 8A. Milchev, J. Phys. Condens. Matter 2011, 23, 103101.
- 9B. M. Venkatesan, R. Bashir, Nat. Nanotechnol. 2011, 6, 615.
- 10M. Wanunu, Phys Life Rev 2012, 9, 125.
- 11D. Panja, G. T. Barkema, A. B. Kolomeisky, J. Phys. Condens. Matter 2013, 25, 413101.
- 12M. Muthukumar, C. Plesa, C. Dekker, Phys. Today 2015, 68, 40.
- 13D. Deamer, M. Akeson, D. Branton, Nat. Biotechnol. 2016, 34, 518.
- 14L. Liu, H. C. Wu, Angew. Chem. Int. Ed. 2016, 55, 15216.
- 15W. Shi, A. K. Friedman, L. A. Baker, Anal. Chem. 2017, 89, 157.
- 16Y. L. Ying, Z. L. Hu, S. Zhang, Y. Qing, A. Fragasso, G. Maglia, A. Meller, H. Bayley, C. Dekker, Y. T. Long, Nat. Nanotechnol. 2022, 17, 1136.
- 17Y. Astier, O. Braha, H. Bayley, J. Am. Chem. Soc. 2006, 128, 1705.
- 18J. Clarke, H. C. Wu, L. Jayasinghe, A. Patel, S. Reid, H. Bayley, Nat. Nanotechnol. 2009, 4, 265.
- 19X. Y. Zhang, X. J. Xu, Z. Y. Yang, A. J. Burcke, K. S. Gates, S. J. Chen, L. Q. Gu, J. Am. Chem. Soc. 2015, 137, 15742.
- 20X. Zhang, D. Zhang, C. Zhao, K. Tian, R. Shi, X. Du, A. J. Burcke, J. Wang, S. J. Chen, L. Q. Gu, Nat. Commun. 2017, 8, 1458.
- 21P. Waduge, R. He, P. Bandarkar, H. Yamazaki, B. Cressiot, Q. Zhao, P. C. Whitford, M. Wanunu, ACS Nano 2017, 11, 5706.
- 22R. Hu, J. V. Rodrigues, P. Waduge, H. Yamazaki, B. Cressiot, Y. Chishti, L. Makowski, D. Yu, E. Shakhnovich, Q. Zhao, M. Wanunu, ACS Nano 2018, 12, 4494.
- 23E. R. Mardis, Annu. Rev. Genomics Hum. Genet. 2008, 9, 387.
- 24M. L. Metzker, Nat. Rev. Genet. 2010, 11, 31.
- 25M. Jain, I. T. Fiddes, K. H. Miga, H. E. Olsen, B. Paten, M. Akeson, Nat. Methods 2015, 12, 351.
- 26R. K. Sharma, I. Agrawal, L. Dai, P. S. Doyle, S. Garaj, Nat. Commun. 2019, 10, 4473.
- 27P. Bandarkar, H. Yang, R. Y. Henley, M. Wanunu, P. C. Whitford, Biophys. J. 2020, 118, 1612.
- 28S. Zhang, X. Wang, T. Li, L. Liu, H. C. Wu, M. B. Luo, J. Li, Langmuir 2015, 31, 10094.
- 29J. Wang, M. Y. Li, J. Yang, Y. Q. Wang, X. Y. Wu, J. Huang, Y. L. Ying, Y. T. Long, ACS Cent. Sci. 2020, 6, 76.
- 30C. Shasha, R. Y. Henley, D. H. Stoloff, K. D. Rynearson, T. Hermann, M. Wanunu, ACS Nano 2014, 8, 6425.
- 31Y. You, K. Zhou, B. Guo, Q. Liu, Z. Cao, L. Liu, H. C. Wu, ACS Sens. 2019, 4, 774.
- 32L. B. Zhu, Y. Xu, I. Ali, L. P. Liu, H. W. Wu, Z. H. Lu, Q. J. Liu, ACS Appl. Mater. Interfaces 2018, 10, 26555.
- 33R. Hu, J. V. Rodrigues, P. Waduge, H. Yamazaki, B. Cressiot, Y. Chishti, L. Makowski, D. P. Yu, E. Shakhnovich, Q. Zhao, M. Wanunu, ACS Nano 2018, 12, 4494.
- 34P. G. de Gennes, Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 7262.
- 35J. Han, H. G. Craighead, Science 2000, 288, 1026.
- 36J. W. F. Robertson, C. G. Rodrigues, V. M. Stanford, K. A. Rubinson, O. V. Krasilnikov, J. J. Kasianowicz, Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 8207.
- 37W. Si, M. Yu, G. Wu, C. Chen, J. Sha, Y. Zhang, Y. Chen, ACS Nano 2020, 14, 15349.
- 38W. Si, Z. Zhu, G. Wu, Y. Zhang, Y. Chen, J. Sha, Small Methods 2022, 6, e2200318.
- 39A. Meller, L. Nivon, D. Branton, Phys. Rev. Lett. 2001, 86, 3435.
- 40J. Chuang, Y. Kantor, M. Kardar, Phys. Rev. E 2002, 65, 011802.
- 41H. Vocks, D. Panja, G. T. Barkema, R. C. Ball, J. Phys. Condens. Matter 2008, 20, 095224.
- 42A. Milchev, J. L. A. Dubbeldam, V. G. Rostiashvili, T. A. Vilgis, Ann. N. Y. Acad. Sci. 2009, 1161, 95.
- 43W. Nowicki, G. Nowicka, J. Narkiewicz-Michalek, Eur. Polym. J. 2010, 46, 112.
- 44Y. He, M. Tsutsui, R. H. Scheicher, F. Bai, M. Taniguchi, T. Kawai, ACS Nano 2013, 7, 538.
- 45M. Belkin, A. Aksimentiev, ACS Appl. Mater. Interfaces 2016, 8, 12599.
- 46M. B. Luo, D. A. Tsehay, L. Z. Sun, J. Chem. Phys. 2017, 147, 034901.
- 47C. T. A. Wong, M. Muthukumar, J. Chem. Phys. 2010, 133, 045101.
- 48B. N. Anderson, M. Muthukumar, A. Meller, ACS Nano 2013, 7, 1408.
- 49A. Gopinathan, Y. W. Kim, Phys. Rev. Lett. 2007, 99, 228106.
- 50W. Yu, K. Luo, J. Am. Chem. Soc. 2011, 133, 13565.
- 51W. P. Cao, L. Z. Sun, C. Wang, M. B. Luo, J. Chem. Phys. 2011, 135, 174901.
- 52M. N. Hamidabad, S. Asgari, R. H. Abdolvahab, Polymer 2020, 204, 122847.
10.1016/j.polymer.2020.122847 Google Scholar
- 53R. M. M. Smeets, U. F. Keyser, D. Krapf, M. Y. Wu, N. H. Dekker, C. Dekker, Nano Lett. 2006, 6, 89.
- 54V. Wang, N. Ermann, U. F. Keyser, Nano Lett. 2019, 19, 5661.
- 55C. H. Wang, M. B. Luo, X. J. Xu, C. Wang, L. Z. Sun, Eur. Polym. J. 2019, 121, 109332.
- 56L. Z. Sun, J. L. Qian, P. Cai, H. X. Hu, X. Xu, M. B. Luo, Polymer 2022, 250, 124895.
- 57H. W. de Haan, G. W. Slater, Phys. Rev. E 2013, 87, 042604.
- 58R. Adhikari, A. Bhattacharya, Europhys. Lett. 2018, 121, 68006.
10.1209/0295-5075/121/68006 Google Scholar
- 59B. Luan, G. Stolovitzky, G. Martyna, Nanoscale 2012, 4, 1068.
- 60J. Xu, X. Jiang, N. Yang, Chem. Commun. 2023, 59, 4838.
- 61N. Nikoofard, H. Fazli, Phys. Rev. E 2012, 85, 021804.
10.1103/PhysRevE.85.021804 Google Scholar
- 62K. Nagarajan, S. B. Chen, J. Phys. Chem. B 2019, 123, 9031.
- 63W. Lv, M. Chen, R. Wu, Soft Matter 2013, 9, 960.
- 64S. Fujita, I. Kawamura, R. Kawano, ACS Nano 2023, 17, 3358.
- 65K. Luo, T. Ala-Nissila, S. C. Ying, A. Bhattacharya, Phys. Rev. Lett. 2007, 99, 148102.
- 66L. Z. Sun, W. P. Cao, M. B. Luo, J. Chem. Phys. 2009, 131, 194904.
- 67J. A. Cohen, A. Chaudhuri, R. Golestanian, Phys. Rev. X 2012, 2, 021002.
- 68H. H. Katkar, M. Muthukumar, J. Chem. Phys. 2014, 140, 135102.
- 69W. Si, Y. Zhang, J. Sha, Y. Chen, Nanoscale 2018, 10, 19450.
- 70T. Ding, J. Yang, V. Pan, N. Zhao, Z. Lu, Y. Ke, C. Zhang, Nucleic Acids Res. 2020, 48, 2791.
- 71A. Fragasso, S. Schmid, C. Dekker, ACS Nano 2020, 14, 1338.
- 72C. Cao, Y. L. Ying, Z. L. Hu, D. F. Liao, H. Tian, Y. T. Long, Nat. Nanotechnol. 2016, 11, 713.
- 73M. Jain, H. E. Olsen, B. Paten, M. Akeson, Genome Biol. 2016, 17, 239.
- 74W. Zhou, H. Qiu, Y. Guo, W. Guo, J. Phys. Chem. B 2020, 124, 1611.
- 75S. Awasthi, C. Ying, J. Li, M. Mayer, ACS Nano 2023, 17, 12325.
- 76N. Yang, X. Jiang, Carbon 2017, 115, 293.
- 77S. M. Leitao, V. Navikas, H. Miljkovic, B. Drake, S. Marion, G. Pistoletti Blanchet, K. Chen, S. F. Mayer, U. F. Keyser, A. Kuhn, G. E. Fantner, A. Radenovic, Nat. Nanotechnol. 2023, 18, 1078. https://doi.org/10.1038/s41565-023-01412-4
- 78L. Xue, H. Yamazaki, R. Ren, M. Wanunu, A. P. Ivanov, J. B. Edel, Nat. Rev. Mater. 2020, 5, 931.
- 79R. Wei, V. Gatterdam, R. Wieneke, R. Tampe, U. Rant, Nat. Nanotechnol. 2012, 7, 257.
- 80J. Choi, C. C. Lee, S. Park, Microsyst. Nanoeng. 2019, 5, 12.
- 81J. D. Spitzberg, A. Zrehen, X. F. van Kooten, A. Meller, Adv. Mater. 2019, 31, e1900422.
- 82M. Derrington, T. Z. Butler, M. D. Collins, E. Manrao, M. Pavlenok, M. Niederweis, J. H. Gundlach, Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 16060.
- 83S. Yan, J. Zhang, Y. Wang, W. Guo, S. Zhang, Y. Liu, J. Cao, Y. Wang, L. L. Wang, F. Ma, P. Zhang, H. Y. Chen, S. Huang, Nano Lett. 2021, 21, 6703.
- 84L. T. Sexton, L. P. Horne, C. R. Martin, Mol. BioSyst. 2007, 3, 667.
- 85N. A. Bell, U. F. Keyser, J. Am. Chem. Soc. 2015, 137, 2035.
- 86N. Nikoofard, H. Khalilian, H. Fazli, J. Chem. Phys. 2013, 139, 074901.
- 87L. Z. Sun, W. P. Cao, C. H. Wang, X. J. Xu, J. Chem. Phys. 2021, 154, 054903.
- 88L. Z. Sun, H. B. Li, X. J. Xu, M. B. Luo, J. Phys. Condens. Matter 2018, 30, 495101.
- 89A. Nikolaev, M. E. Gracheva, Nanotechnology 2011, 22, 165202.
- 90I. A. Jou, D. V. Melnikov, C. R. McKinney, M. E. Gracheva, Phys. Rev. E 2012, 86, 061906.
10.1103/PhysRevE.86.061906 Google Scholar
- 91D. V. Melnikov, J.-P. Leburton, M. E. Gracheva, Nanotechnology 2012, 23, 255501.
- 92F. Wu, Y. Fu, X. Yang, L. Z. Sun, M. B. Luo, J. Polym. Sci. B Polym. Phys. 2019, 57, 912.
- 93R. Ledesma-Aguilar, T. Sakaue, J. M. Yeomans, Soft Matter 2012, 8, 4306.
- 94R. Ledesma-Aguilar, T. Sakaue, J. M. Yeomans, Soft Matter 2012, 8, 1884.
- 95T. Ikonen, A. Bhattacharya, T. Ala-Nissila, W. Sung, Phys. Rev. E 2012, 85, 051803.
- 96J. Sarabadani, T. Ikonen, T. Ala-Nissila, J. Chem. Phys. 2014, 141, 214907.
- 97C. Ho, R. Qiao, J. B. Heng, A. Chatterjee, R. J. Timp, N. R. Aluru, G. Timp, Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10445.
- 98M. E. Gracheva, J.-P. Leburton, Nanotechnology 2007, 18, 145704.
10.1088/0957-4484/18/14/145704 Google Scholar