In-situ thermal reduction and effective reinforcement of graphene nanosheet/poly (ethylene glycol)/poly (lactic acid) nanocomposites
Xiang Lu
Key Laboratory of Polymer Processing Engineering of the Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, 510640 People's Republic of China
Search for more papers by this authorJintao Huang
Key Laboratory of Polymer Processing Engineering of the Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, 510640 People's Republic of China
Search for more papers by this authorLi Yang
Key Laboratory of Polymer Processing Engineering of the Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, 510640 People's Republic of China
Search for more papers by this authorNing Zhang
College of Mechanical Engineering, Guangdong Jidian Polytechnic, Guangzhou, 510515 People's Republic of China
Search for more papers by this authorCorresponding Author
Gang Jin
Key Laboratory of Polymer Processing Engineering of the Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, 510640 People's Republic of China
Correspondence to: Gang Jin, Key Laboratory of Polymer Processing Engineering of the Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, People's Republic of China.
E-mail: [email protected]
Search for more papers by this authorJinping Qu
Key Laboratory of Polymer Processing Engineering of the Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, 510640 People's Republic of China
Search for more papers by this authorXiang Lu
Key Laboratory of Polymer Processing Engineering of the Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, 510640 People's Republic of China
Search for more papers by this authorJintao Huang
Key Laboratory of Polymer Processing Engineering of the Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, 510640 People's Republic of China
Search for more papers by this authorLi Yang
Key Laboratory of Polymer Processing Engineering of the Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, 510640 People's Republic of China
Search for more papers by this authorNing Zhang
College of Mechanical Engineering, Guangdong Jidian Polytechnic, Guangzhou, 510515 People's Republic of China
Search for more papers by this authorCorresponding Author
Gang Jin
Key Laboratory of Polymer Processing Engineering of the Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, 510640 People's Republic of China
Correspondence to: Gang Jin, Key Laboratory of Polymer Processing Engineering of the Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, People's Republic of China.
E-mail: [email protected]
Search for more papers by this authorJinping Qu
Key Laboratory of Polymer Processing Engineering of the Ministry of Education; National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, 510640 People's Republic of China
Search for more papers by this authorAbstract
This study aims to achieve a molecule-level dispersion of graphene nanosheets (GNSs) and a maximum interfacial interaction between GNSs and a polymer matrix. GNS-reinforced poly (ethylene glycol) (PEG)/poly (lactic acid) (PLA) nanocomposites are obtained by a facile and environment-friendly preparation method. Graphite oxide and GNSs are characterized by atomic force microscopy, Raman spectroscopy, and X-ray diffraction. Scanning electron microscopy shows that the state of dispersion of the GNS in the PEG/PLA matrix is distribution. The tensile strength and Young's modulus increases by 45% and 188%, respectively, with the addition of 4.0 wt% GNSs. The thermal stability of the GNS-based nanocomposites also improves. Differential scanning calorimetry indicates that GNSs have no remarkable effect on the crystallinity of the nanocomposites. The effective reinforcement of the nanocomposites is mainly attributed to the highly strong molecular-level dispersion of the GNSs in the polymer matrix. Copyright © 2014 John Wiley & Sons, Ltd.
REFERENCES
- 1 F. Beckert, C. Friedrich, R. Thomann, R. Mülhaupt, Macromolecules 2012, 45, 7083.
- 2 H. Pang, T. Chen, G. Zhang, B. Zeng, Z. M. Li, Mater. Lett. 2010, 64, 2226.
- 3 C. Xu, J. Gao, H. Xiu, X. Li, J. Zhang, F. Luo, Compos. Part A-Appl. S. 2013, 53, 24.
- 4 J. Si, J. Li, S. Wang, Y. Li, X. Jing, Compos. Part A-Appl. S. 2013, 54, 166.
- 5 S. Cheng, X. Chen, Y. G. Hsuan, C. Y. Li, Macromolecules 2012, 45, 993.
- 6 W. Wang, Z. Wang, Y. Liu, N. Li, W. Wang, J. Gao, Mater. Res. Bull 2012, 47, 2245.
- 7 Z. Tang, H. Kang, Z. Shen, B. Guo, L. Zhang, D. Jia, Macromolecules 2012, 45, 3444.
- 8 J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Adv. Funct. Mater. 2009, 19, 2297.
- 9 M. Allen, V. Tung, R. Kaner, Chem. Rev. 2010, 110, 132.
- 10 K. P. Loh, Q. Bao, P. K. Ang, J. Yang, J. Mater. Chem. 2010, 20, 2277.
- 11 S. Thakur, N. Karak, Carbon 2012, 50, 5331.
- 12 C. Gao, X. Y. Yu, R. X. Xu, J. H. Liu, X. J. Huang, ACS Appl. Mater. Interfaces 2012, 4, 4672.
- 13 T. Huang, R. Lu, C. Su, H. Wang, Z. Guo, P. Liu, ACS Appl. Mater. Interfaces 2012, 4, 2699.
- 14 Z. Xu, C. Gao, Macromolecules 2010, 43, 6716.
- 15 Y. Mo, M. Yang, Z. Lu, F. Huang, Compos. Part A-Appl. S. 2013, 54, 153.
- 16 D. Zheng, G. Tang, H. B. Zhang, Z. Z. Yu, F. Yavari, N. Koratkar, Compos. Sci. Tech. 2012, 72, 284.
- 17 H. B. Zhang, J. W. Wang, Q. Yan, W. G. Zheng, C. Chen, Z. Z. Yu, J. Mater. Chem. 2011, 21, 5392.
- 18 M. Traina, A. Pegoretti, J. Nanopart. Res. 2012, 14, 801.
- 19 H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, J. Phys. Chem. B 2006, 110, 8535.
- 20 S. Dubin, S. Gilje, K. Wang, C. T. Vincent, C. Kitty, A. S. Hall, ACS Nano 2010, 4, 3845.
- 21 J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, Carbon 2009, 47, 922.
- 22 X. Wang, Y. Hu, L. Song, H. Yang, W. Xing, H. Lu, J. Mater. Chem. 2011, 21, 4222.
- 23 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Carbon 2007, 45, 1558.
- 24 H. B. Zhang, W. G. Zheng, Q. Yan, Y. Yang, J. W. Wang, Z. H. Lu, Polymer 2010, 51, 1191.
- 25 S. Bourbigot, G. Fontaine, A. Gallos, S. Bellayer, Polym. Advan. Technol. 2011, 22, 30.
- 26 Y. Q. Zhao, J. P. Qu, Y. H. Feng, Z. H. Wu, F. Q. Chen, H. L. Tang, Polym. Advan. Technol. 2012, 23, 632.
- 27 X. Lu, J. Huang, G. J. He, L. Y. Yang, N. Zhang, Y. Q. Zhao, Ind. Eng. Chem. Res. 2013, 52, 13677.
- 28 T. Y. Jin, G. J. Young, C. L. Sang, G. M. Byung, Polym. Advan. Technol. 2009, 20, 631.
- 29 H. Zhao, Z. Cui, X. Sun, L. S. Turng, X. Peng, Ind. Eng. Chem. Res. 2013, 52, 2569.
- 30 M. Sheth, R. A. Kumar, V. Dave, R. A. Gross, J. Appl. Polym. Sci. 1997, 66, 1495.
- 31
Z. Y. Jia,
C. Y. Han,
L. S. Dong,
Y. M. Yang, Acta Polym. Sinica 2009, 9, 967.
10.3724/SP.J.1105.2009.00967 Google Scholar
- 32 T. Forati, M. Atai, A. M. Rashidi, M. Imani, A. Behnamghader, Polym. Advan. Technol. 2014, 25, 322.
- 33 C. Casiraghi, F. Piazza, A. C. Ferrari, D. Grambole, J. Robertson, Diam. Relat. Mater. 2005, 14, 1098.
- 34 A. C. Ferrari, J. Robertson, Phil. Trans. R. Soc. Lond. A. 2004, 362, 2477.
- 35 G. X. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, J. Phys. Chem. C 2008, 112, 8192.
- 36 Z. Wang, J. K. Nelson, H. Hillborg, S. Zhao, L. S. Schadler, Adv. Mater. 2012, 24, 3134.
- 37 H. He, J. Klinowski, M. Forster, A. Lerf, Chem. Phys. Lett. 1998, 287, 53.
- 38 D. He, K. Cheng, T. Peng, M. Pan, S. Mu, J. Mater. Chem. 2013, 1, 2126.
- 39 Y. Hwang, M. Kim, J. Kim, Compos. Part A-Appl. S. 2013, 55, 195.
- 40 J. Shen, B. Yan, T. Li, Y. Long, N. Li, M. Ye, Compos. Part A-Appl. S. 2012, 43, 1476.
- 41 W. Dale, R. S. J. Schaefer, Macromolecular 2007, 40, 8501.
- 42 G. M. B. Cristina, K. Klaus, Nano Lett. 2008, 8, 2045.
- 43 D. Qian, E. C. Dickey, R. Andrews, T. Rantell, Appl. Phys. Lett. 2000, 76, 2868.
- 44 K. Kalaitzidou, H. Fukushima, H. Miyagawa, L. T. Drzal, Polym. Eng. Sci. 2007, 47, 1796.
- 45 A. N. Frone, S. Berlioz, J. F. Chailan, D. M. Panaitescu, Carbohydr. Polym. 2013, 91, 377.
- 46 P. J. Herrera-Franco, A. Valadez-González, Compos. B Eng. 2005, 36, 597.
- 47 N. Ding, X. Chen, C. M. L. Wu, X. Lu, J. Phys. Chem. C 2012, 116, 22532.
- 48 Y. Cao, J. Feng, P. Wu, Carbon 2010, 48, 3834.
- 49 N. Yousefi, M. M. Gudarzi, Q. Zheng, X. Lin, X. Shen, J. Jia, Compos. Part A-Appl. S. 2013, 49, 42.