Engineering peptide drug therapeutics through chemical conjugation and implication in clinics
Corresponding Author
Syed Faheem Askari Rizvi
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
Correspondence Haixia Zhang and Syed Faheem Askari Rizvi, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Haixia Zhang
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
Correspondence Haixia Zhang and Syed Faheem Askari Rizvi, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China.
Email: [email protected] and [email protected]
Search for more papers by this authorQuan Fang
Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
Search for more papers by this authorCorresponding Author
Syed Faheem Askari Rizvi
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
Correspondence Haixia Zhang and Syed Faheem Askari Rizvi, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Haixia Zhang
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
Correspondence Haixia Zhang and Syed Faheem Askari Rizvi, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China.
Email: [email protected] and [email protected]
Search for more papers by this authorQuan Fang
Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
Search for more papers by this authorAbstract
The development of peptide drugs has made tremendous progress in the past few decades because of the advancements in modification chemistry and analytical technologies. The novel-designed peptide drugs have been modified through various biochemical methods with improved diagnostic, therapeutic, and drug-delivery strategies. Researchers found it a helping hand to overcome the inherent limitations of peptides and bring continued advancements in their applications. Furthermore, the emergence of peptide-drug conjugates (PDCs)—utilizes target-oriented peptide moieties as a vehicle for cytotoxic payloads via conjugation with cleavable chemical agents, resulting in the key foundation of the new era of targeted peptide drugs. This review summarizes the various classifications of peptide drugs, suitable chemical modification strategies to improve the ADME (adsorption, distribution, metabolism, and excretion) features of peptide drugs, and recent (2015–early 2024) progress/achievements in peptide-based drug delivery systems as well as their fruitful implication in preclinical and clinical studies. Furthermore, we also summarized the brief description of other types of PDCs, including peptide-MOF conjugates and peptide-UCNP conjugates. The principal aim is to provide scattered and diversified knowledge in one place and to help researchers understand the pinching knots in the science of PDC development and progress toward a bright future of novel peptide drugs.
CONFLICT OF INTERESTS STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data availability is not applicable to this article as no new research data generated or analyzed in this study.
REFERENCES
- 1Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71: 209-249.
- 2Rizvi SFA, Zhang H. Emerging trends of receptor-mediated tumor targeting peptides: a review with perspective from molecular imaging modalities. Eur J Med Chem. 2021; 221:113538.
- 3Valent P, Groner B, Schumacher U, et al. Paul Ehrlich (1854-1915) and his contributions to the foundation and birth of translational medicine. J Innate Immun. 2016; 8: 111-120.
- 4Zipfel PF, Skerka C. From magic bullets to modern therapeutics: Paul Ehrlich, the German immunobiologist and physician coined the term ‘complement’. Mol Immunol. 2022; 150: 90-98.
- 5DiMasi JA, Reichert JM, Feldman L, Malins A. Clinical approval success rates for investigational cancer drugs. Clin Pharmacol Ther. 2013; 94: 329-335.
- 6Dan N, Setua S, Kashyap V, et al. Antibody-drug conjugates for cancer therapy: chemistry to clinical implications. Pharmaceuticals. 2018; 11: 32-39.
- 7Maecker H, Jonnalagadda V, Bhakta S, Jammalamadaka V, Junutula JR. Exploration of the antibody–drug conjugate clinical landscape. Mabs. 2023; 15:2229101.
- 8Gogia P, Ashraf H, Bhasin S, Xu Y. Antibody–drug conjugates: a review of approved drugs and their clinical level of evidence. Cancers. 2023; 15: 3886.
- 9Wang L, Wang N, Zhang W, et al. Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther. 2022; 7: 48-65.
- 10Lee ACL, Harris JL, Khanna KK, Hong JH. A comprehensive review on current advances in peptide drug development and design. Int J Mol Sci. 2019; 20: 2383.
- 11Nhàn T, Yamada T, Yamada KH. Peptide-based agents for cancer treatment: current applications and future directions. Int J Mol Sci. 2023; 24:12931.
- 12Baradaran M. Current Status of Peptide Medications and the Position of Active Therapeutic Peptides with Scorpion Venom Origin. Jundishapur J Nat Pharm Prod. 2023; 18:e134049.
- 13Wang Y, Cheetham AG, Angacian G, Su H, Xie L, Cui H. Peptide–drug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliv Rev. 2017; 110-111: 112-126.
- 14Ma L, Wang C, He Z, Cheng B, Zheng L, Huang K. Peptide-drug conjugate: a novel drug design approach. Curr Med Chem. 2017; 24: 3373-3396.
- 15Lindberg J, Nilvebrant J, Nygren P-Å, Lehmann F. Progress and future directions with peptide-drug conjugates for targeted cancer therapy. Molecules. 2021; 26: 6042.
- 16Cooper BM, Iegre J, O' Donovan DH, Ölwegård Halvarsson M, Spring DR. Peptides as a platform for targeted therapeutics for cancer: peptide–drug conjugates (PDCs). Chem Soc Rev. 2021; 50: 1480-1494.
- 17He R, Finan B, Mayer JP, DiMarchi RD. Peptide conjugates with small molecules designed to enhance efficacy and safety. Molecules. 2019; 24: 1855.
- 18Hoppenz P, Els-Heindl S, Beck-Sickinger AG. Peptide-drug conjugates and their targets in advanced cancer therapies. Front Chem. 2020; 8: 571-584.
- 19Zhu Y-S, Tang K, Lv J. Peptide–drug conjugate-based novel molecular drug delivery system in cancer. Trends Pharmacol Sci. 2021; 42: 857-869.
- 20Battistini L, Bugatti K, Sartori A, Curti C, Zanardi F. RGD peptide-drug conjugates as effective dual targeting platforms: recent advances. Eur J Org Chem. 2021; 2021: 2506-2528.
- 21Alas M, Saghaeidehkordi A, Kaur K. Peptide–drug conjugates with different linkers for cancer therapy. J Med Chem. 2021; 64: 216-232.
- 22Bugatti K. A Brief guide to preparing a peptide–drug conjugate. ChemBioChem. 2023; 24:e202300254.
- 23Fang Y, Wang H. Molecular engineering of peptide–drug conjugates for therapeutics. Pharmaceutics. 2022; 14: 212.
- 24Chavda VP, Solanki HK, Davidson M, Apostolopoulos V, Bojarska J. Peptide-drug conjugates: a new hope for cancer management. Molecules. 2022; 27: 7232.
- 25Fu C, Yu L, Miao Y, et al. Peptide–drug conjugates (PDCs): a novel trend of research and development on targeted therapy, hype or hope? Acta Pharm Sin B. 2022; 8: 1-15.
- 26Gong L, Zhao H, Liu Y, et al. Research advances in peptide‒drug conjugates. Acta Pharm Sin B. 2023; 13: 3659-3677.
- 27Wang M, Liu J, Xia M, et al. Peptide-drug conjugates: a new paradigm for targeted cancer therapy. Eur J Med Chem. 2024; 265:116119.
- 28Wang Y, Li Y, Cao J, et al. Development and characterization of a novel peptide—drug conjugate with DM1 for treatment of FGFR2-positive tumors. Biomedicines. 2021; 9: 849-855.
- 29Chen X, Liu F, Yu X, et al. An auristatin-based peptide-drug conjugate targeting Kita-Kyushu lung cancer antigen 1 for precision chemoradiotherapy in gastric cancer. Eur J Med Chem. 2022; 241:114617.
- 30Regberg J, Srimanee A, Langel Ü. Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals. 2012; 5: 991-1007.
- 31Heh E, Allen J, Ramirez F, et al. Peptide drug conjugates and their role in cancer therapy. Int J Mol Sci. 2023; 24: 829-842.
- 32Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discovery. 2017; 16: 315-337.
- 33Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 2013; 81: 136-147.
- 34Di L. Strategic approaches to optimizing peptide ADME properties. AAPS J. 2015; 17: 134-143.
- 35de la Torre BG, Albericio F. The pharmaceutical industry in 2023: an analysis of FDA drug approvals from the perspective of molecules. Molecules. 2024; 29:585.
- 36Zhou X, Singh M, Sanz Santos G, et al. Pharmacologic activation of p53 triggers viral mimicry response thereby abolishing tumor immune evasion and promoting antitumor immunity. Cancer Discovery. 2021; 11: 3090-3105.
- 37Saleh MN, Patel MR, Bauer TM, et al. Phase 1 trial of ALRN-6924, a dual inhibitor of MDMX and MDM2, in patients with solid tumors and lymphomas bearing wild-type TP53. Clin Cancer Res. 2021; 27: 5236-5247.
- 38Lulla RR, Goldman S, Yamada T, et al. Phase I trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: a Pediatric Brain Tumor Consortium Study. Neuro-Oncology. 2016; 18: 1319-1325.
- 39Nomura K, Hashimoto S, Takeyama R, et al. Broadly applicable and comprehensive synthetic method for N-alkyl-rich drug-like cyclic peptides. J Med Chem. 2022; 65: 13401-13412.
- 40Noy A, Scadden DT, Lee J, et al. Angiogenesis inhibitor IM862 is ineffective against AIDS-Kaposi's sarcoma in a phase III trial, but demonstrates sustained, potent effect of highly active antiretroviral therapy: from the AIDS Malignancy Consortium and IM862 Study Team. J Clin Oncol. 2005; 23: 990-998.
- 41Drappatz J, Brenner A, Wong ET, et al. Phase I study of GRN1005 in recurrent malignant glioma. Clin Cancer Res. 2013; 19: 1567-1576.
- 42Lee D-H, Rötger C, Appeldoorn CCM, et al. Glutathione PEGylated liposomal methylprednisolone (2B3-201) attenuates CNS inflammation and degeneration in murine myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis. J Neuroimmunol. 2014; 274: 96-101.
- 43Mittendorf EA, Lu B, Melisko M, et al. Efficacy and safety analysis of nelipepimut-S vaccine to prevent breast cancer recurrence: a randomized, multicenter, phase III clinical trial. Clin Cancer Res. 2019; 25: 4248-4254.
- 44Clifton GT, Hale D, Vreeland TJ, et al. Results of a randomized phase IIb trial of nelipepimut-S+ trastuzumab versus trastuzumab to prevent recurrences in patients with high-risk HER2 low-expressing breast cancer. Clin Cancer Res. 2020; 26: 2515-2523.
- 45Lynch KT, Squeo GC, Kane WJ, et al. A pilot trial of vaccination with Carcinoembryonic antigen and Her2/neu peptides in advanced colorectal cancer. Int J Cancer. 2022; 150: 164-173.
- 46Dean A, Gill S, McGregor M, Broadbridge V, Järveläinen HA, Price T. Dual αV-integrin and neuropilin-1 targeting peptide CEND-1 plus nab-paclitaxel and gemcitabine for the treatment of metastatic pancreatic ductal adenocarcinoma: a first-in-human, open-label, multicentre, phase 1 study. Lancet Gastroenterol Hepatol. 2022; 7: 943-951.
- 47Toriihara A, Duan H, Thompson HM, et al. 18F-FPPRGD2 PET/CT in patients with metastatic renal cell cancer. Eur J Nucl Med Mol Imaging. 2019; 46: 1518-1523.
- 48Jingjing Z, Gang N, Xinrong F, et al. PET using a GRPR antagonist 68Ga-RM26 in healthy volunteers and prostate cancer patients. J Nucl Med. 2018; 59: 922.
- 49van Putten EHP, Kleijn A, van Beusechem VW, et al. Convection enhanced delivery of the oncolytic adenovirus delta24-RGD in patients with recurrent GBM: a phase I clinical trial including correlative studies. Clin Cancer Res. 2022; 28: 1572-1585.
- 50Nassiri F, Patil V, Yefet LS, et al. Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: a phase 1/2 trial. Nature Med. 2023; 29: 1370-1378.
- 51Lang FF, Conrad C, Gomez-Manzano C, et al. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol. 2018; 36: 1419-1427.
- 52Gállego Pérez-Larraya J, Garcia-Moure M, Labiano S, et al. Oncolytic DNX-2401 virus for pediatric diffuse intrinsic pontine glioma. N Engl J Med. 2022; 386: 2471-2481.
- 53Najm AAK, Azfaralariff A, Dyari HRE, et al. Anti-breast cancer synthetic peptides derived from the Anabas testudineus skin mucus fractions. Sci Rep. 2021; 11:23182.
- 54Kuo H-M, Tseng C-C, Chen N-F, et al. MSP-4, an antimicrobial peptide, induces apoptosis via activation of extrinsic Fas/FasL-and intrinsic mitochondria-mediated pathways in one osteosarcoma cell line. Mar Drugs. 2018; 16: 8.
- 55Yi Z-F, Cho S-G, Zhao H, et al. A novel peptide from human apolipoprotein(a) inhibits angiogenesis and tumor growth by targeting c-Src phosphorylation in VEGF-induced human umbilical endothelial cells. Int J Cancer. 2009; 124: 843-852.
- 56Simberg D, Duza T, Park JH, et al. Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci USA. 2007; 104: 932-936.
- 57Pasqualini R, Koivunen E, Ruoslahti E. αv integrins as receptors for tumor targeting by circulating ligands. Nature Biotechnol. 1997; 15: 542-546.
- 58Laverman P, Roosenburg S, Gotthardt M, et al. Targeting of a CCK2 receptor splice variant with 111In-labelled cholecystokinin-8 (CCK8) and 111In-labelled minigastrin. Eur J Nucl Med Mol Imaging. 2008; 35: 386-392.
- 59Rizvi SFA, Mu S, Wang Y, Li S, Zhang H. Fluorescent RGD-based pro-apoptotic peptide conjugates as mitochondria-targeting probes for enhanced anticancer activities. Biomed Pharmacother. 2020; 127:110179.
- 60Lyu L, Huang L, Huang T, Xiang W, Yuan JD, Zhang Ch. Cell-penetrating peptide conjugates of gambogic acid enhance the antitumor effect on human bladder cancer EJ cells through ROS-mediated apoptosis. Drug Des Devel Ther. 2018; 12: 743-756.
- 61Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988; 55: 1189-1193.
- 62Jimenez-Macias JL, Lee YC, Miller E, et al. A Pt(IV)-conjugated brain penetrant macrocyclic peptide shows pre-clinical efficacy in glioblastoma. J Controlled Release. 2022; 352: 623-636.
- 63Hofling AA, Fotenos AF, Niu G, et al. Prostate cancer theranostics: concurrent approvals by the Food and Drug Administration of the first diagnostic imaging drug indicated to select patients for a paired radioligand therapeutic drug. J Nucl Med. 2022; 63: jnumed.122.264299.
- 64de Jong M, Valkema R, Jamar F, et al. Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings. Semin Nucl Med. 2002; 32: 133-140.
- 65Mateos M-V, Bladé J, Bringhen S, et al. Melflufen: a peptide–drug conjugate for the treatment of multiple myeloma. J Clin Med. 2020; 9: 3120.
- 66Heh E, Allen J, Ramirez F, et al. Peptide drug conjugates and their role in cancer therapy. Int J Mol Sci. 2023; 24: 829.
- 67Ley K, Rivera-Nieves J, Sandborn WJ, Shattil S. Integrin-based therapeutics: biological basis, clinical use and new drugs. Nat Rev Drug Discovery. 2016; 15: 173-183.
- 68Biri-Kovács B, Adorján A, Szabó I, Szeder B, Bősze S, Mező G. Structure–activity relationship of HER2 receptor targeting peptide and its derivatives in targeted tumor therapy. Biomolecules. 2020; 10: 183.
- 69Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D. Paclitaxel's mechanistic and clinical effects on breast cancer. Biomolecules. 2019; 9: 789.
- 70Rizvi SFA, Abbas N, Zhang H, Fang Q. Identification of a pH-responsive peptide–paclitaxel conjugate as a novel drug with improved therapeutic potentiall. J Med Chem. 2023; 66: 8324-8337.
- 71Hernandez Vargas S, Kossatz S, Voss J, et al. Specific targeting of somatostatin receptor subtype-2 for fluorescence-guided surgery. Clin Cancer Res. 2019; 25: 4332-4342.
- 72Kumthekar P, Tang S-C, Brenner AJ, et al. ANG1005, a brain-penetrating peptide–drug conjugate, shows activity in patients with breast cancer with leptomeningeal carcinomatosis and recurrent brain metastases. Clin Cancer Res. 2020; 26: 2789-2799.
- 73Cho C-F, Farquhar CE, Fadzen CM, et al. A tumor-homing peptide platform enhances drug solubility, improves blood–brain barrier permeability and targets glioblastoma. Cancers. 2022; 14: 2207.
- 74Park JY, Shin Y, Won WR, et al. Development of AE147 peptide-conjugated nanocarriers for targeting uPAR-overexpressing cancer cells. Int J Nanomedicine. 2021; 16: 5437-5449.
- 75Mohammadi R, Shokri B, Shamshirian D, Zarghi A, Shahhosseini S. Synthesis and biological evaluation of RGD conjugated with Ketoprofen/Naproxen and radiolabeled with [99mTc] via N4(GGAG) for αVβ3 integrin-targeted drug delivery. Daru. 2020; 28: 87-96.
- 76 Creative Peptides Blog. FDA approved peptide drugs in the first half of 2023. https://www.creative-peptides.com/blog/fda-approved-peptide-drugs-in-the-first-half-of-2023/
- 77Zou H, Banerjee P, Leung SSY, et al. Application of pharmacokinetic-pharmacodynamic modeling in drug delivery: development and challenges. Front Pharmacol. 2020; 11:543082.
- 78Santos GB, Ganesan A, Emery FS. Oral administration of peptide-based drugs: beyond Lipinski's Rule. ChemMedChem. 2016; 11: 2245-2251.
- 79Bucheit JD, Pamulapati LG, Carter N, Malloy K, Dixon DL, Sisson EM. Oral semaglutide: a review of the first oral glucagon-like peptide 1 receptor agonist. Diabetes Technol Ther. 2020; 22: 10-18.
- 80Haddadzadegan S, Dorkoosh F, Bernkop-Schnürch A. Oral delivery of therapeutic peptides and proteins: technology landscape of lipid-based nanocarriers. Adv Drug Deliv Rev. 2022; 182:114097.
- 81Blackwell HE, Grubbs RH. Highly efficient synthesis of covalently cross-linked peptide helices by ring-closing metathesis. Angew Chem Int Ed. 1998; 37: 3281-3284.
10.1002/(SICI)1521-3773(19981217)37:23<3281::AID-ANIE3281>3.0.CO;2-V CAS PubMed Web of Science® Google Scholar
- 82Heinis C, Rutherford T, Freund S, Winter G. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat Chem Biol. 2009; 5: 502-507.
- 83Zhang M, Xu B, Li N, et al. OFP011 cyclic peptide as a multifunctional agonist for opioid/neuropeptide ff receptors with improved blood–brain barrier penetration. ACS Chem Neurosci. 2022; 13: 3078-3092.
- 84Costa L, Sousa E, Fernandes C. Cyclic peptides in pipeline: what future for these great molecules? Pharmaceuticals. 2023; 16: 996.
- 85Feng Z, Xu B. Inspiration from the mirror: D-amino acid containing peptides in biomedical approaches. Biomol Concepts. 2016; 7: 179-187.
- 86Werle M, Bernkop-Schnürch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids. 2006; 30: 351-367.
- 87Dawson PE, Muir TW, Clark-Lewis I, Kent S. Synthesis of proteins by native chemical ligation. Science. 1994; 266: 776-779.
- 88Nishimura Y, Francis JN, Donau OK, et al. Prevention and treatment of SHIVAD8 infection in rhesus macaques by a potent d-peptide HIV entry inhibitor. Proc Natl Acad Sci USA. 2020; 117: 22436-22442.
- 89Schumacher TNM, Mayr LM, Minor DL, Milhollen MA, Burgess MW, Kim PS. Identification of D-peptide ligands through mirror-image phage display. Science. 1996; 271: 1854-1857.
- 90Liu M, Li C, Pazgier M, et al. D-peptide inhibitors of the p53–MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proc Natl Acad Sci USA. 2010; 107: 14321-14326.
- 91Drucker DJ. Advances in oral peptide therapeutics. Nat Rev Drug Discovery. 2020; 19: 277-289.
- 92Sharma R, Borah SJ, Bhawna I, et al. Functionalized peptide-based nanoparticles for targeted cancer nanotherapeutics: a state-of-the-art review. ACS Omega. 2022; 7: 36092-36107.
- 93Rizvi SFA, Mu S, Zhao C, Zhang H. Fabrication of self-assembled peptide nanoparticles for in vitro assessment of cell apoptosis pathway and in vivo therapeutic efficacy. Microchim Acta. 2022; 189: 53-62.
- 94Li T, Lu X-M, Zhang M-R, Hu K, Li Z. Peptide-based nanomaterials: self-assembly, properties and applications. Bioact Mater. 2022; 11: 268-282.
- 95Liu T, Li L, Cheng C, He B, Jiang T. Emerging prospects of protein/peptide-based nanoassemblies for drug delivery and vaccine development. Nano Res. 2022; 15: 7267-7285.
- 96Sun Y, Liang Y, Dai W, et al. Peptide–drug conjugate-based nanocombination actualizes breast cancer treatment by maytansinoid and photothermia with the assistance of fluorescent and photoacoustic images. Nano Lett. 2019; 19: 3229-3237.
- 97Jeong W, Bu J, Kubiatowicz LJ, Chen SS, Kim Y, Hong S. Peptide–nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? Nano Convergence. 2018; 5: 38-47.
- 98Sun L, Liu H, Ye Y, et al. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther. 2023; 8: 418.
- 99Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther. 2023; 8: 293.
- 100Jain N, Smith SW, Ghone S, Tomczuk B. Current ADC linker chemistry. Pharm Res. 2015; 32: 3526-3540.
- 101Bargh JD, Isidro-Llobet A, Parker JS, Spring DR. Cleavable linkers in antibody–drug conjugates. Chem Soc Rev. 2019; 48: 4361-4374.
- 102Agarwal P, Bertozzi CR. Site-specific antibody–drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug Chem. 2015; 26: 176-192.
- 103McCombs JR, Owen SC. Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS J. 2015; 17: 339-351.
- 104Wu M, Huang W, Yang N, Liu Y. Learn from antibody–drug conjugates: consideration in the future construction of peptide-drug conjugates for cancer therapy. Exp Hematol Oncol. 2022; 11: 93-105.
- 105Zaazouee MS, Hamdallah A, Helmy SK, et al. Semaglutide for the treatment of type 2 diabetes mellitus: a systematic review and network meta-analysis of safety and efficacy outcomes. Diabetes Metab Syndr. 2022; 16:102511.
- 106Eberle RJ, Gering I, Tusche M, et al. Design of D-amino acids SARS-CoV-2 Main protease inhibitors using the cationic peptide from rattlesnake venom as a scaffold. Pharmaceuticals. 2022; 15: 540-548.
- 107Sis MJ, Ye Z, La Costa K, Webber MJ. Energy landscapes of supramolecular peptide–drug conjugates directed by linker selection and drug topology. ACS Nano. 2022; 16: 9546-9558.
- 108Xue Y, Bai H, Peng B, et al. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev. 2021; 50: 4872-4931.
- 109Xu L, Xu S, Xiang T, et al. Multifunctional building elements for the construction of peptide drug conjugates. Eng Regen. 2022; 3: 92-109.
10.1016/j.engreg.2022.02.004 Google Scholar
- 110Lindberg J, Nilvebrant J, Nygren P-Å, Lehmann F. Progress and future directions with peptide-drug conjugates for targeted cancer therapy. Molecules. 2021; 26: 6042-6054.
- 111Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci. 2017; 38: 406-424.
- 112Heitz F, Morris MC, Divita G. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol. 2009; 157: 195-206.
- 113Pooga M, Langel Ü. Cell-Penetrating Peptides: Methods and Protocols. Springer; 2015.
10.1007/978-1-4939-2806-4_1 Google Scholar
- 114Muñoz-Morris MA, Heitz F, Divita G, Morris MC. The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes. Biochem Biophys Res Commun. 2007; 355: 877-882.
- 115Rousselle C, Clair P, Lefauconnier J-M, Kaczorek M, Scherrmann JM, Temsamani J. New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol Pharmacol. 2000; 57: 679-686.
- 116Gorodetsky R, Levdansky L, Vexler A, et al. Liposome transduction into cells enhanced by haptotactic peptides (Haptides) homologous to fibrinogen C-termini. J Controlled Release. 2004; 95: 477-488.
- 117Sakuma S, Suita M, Masaoka Y, et al. Oligoarginine-linked polymers as a new class of penetration enhancers. J Controlled Release. 2010; 148: 187-196.
- 118Jin E, Zhang B, Sun X, et al. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. J Am Chem Soc. 2013; 135: 933-940.
- 119Duan Z, Chen C, Qin J, et al. Cell-penetrating peptide conjugates to enhance the antitumor effect of paclitaxel on drug-resistant lung cancer. Drug Delivery. 2017; 24: 752-764.
- 120Furman O, Zaporozhets A, Tobi D, et al. Novel cyclic peptides for targeting EGFR and EGRvIII mutation for drug delivery. Pharmaceutics. 2022; 14: 1505.
- 121Zorko M, Langel Ü. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev. 2005; 57: 529-545.
- 122Majumdar S, Siahaan TJ. Peptide-mediated targeted drug delivery. Med Res Rev. 2012; 32: 637-658.
- 123Zhou J, Li Y, Huang W, Shi W, Qian H. Source and exploration of the peptides used to construct peptide-drug conjugates. Eur J Med Chem. 2021; 224:113712.
- 124Fu W, Nelson TS, Santos DF, et al. An NPY Y1 receptor antagonist unmasks latent sensitization and reveals the contribution of protein kinase A and Epac to chronic inflammatory pain. Pain. 2019; 160: 1754-1765.
- 125Körner M, Reubi JC. Neuropeptide Y receptors in primary human brain tumors: overexpression in high-grade tumors. J Neuropathol Exp Neurol. 2008; 67: 741-749.
- 126Ziffert I, Kaiser A, Hoppenz P, Mörl K, Beck-Sickinger AG. Shuttling of peptide-drug conjugates by G protein-coupled receptors is significantly improved by pulsed application. ChemMedChem. 2021; 16: 164-178.
- 127Tang T, Hartig C, Chen Q, et al. Structural basis for ligand recognition of the neuropeptide Y Y2 receptor. Nat Commun. 2021; 12: 737-745.
- 128Lin S, Li Y, Sun X, et al. Update on the role of neuropeptide Y and other related factors in breast cancer and osteoporosis. Front Endocrinol. 2021; 12:705499.
- 129Li J, Tian Y, Wu A. Neuropeptide Y receptors: a promising target for cancer imaging and therapy. Regen Biomater. 2015; 2: 215-219.
- 130Söll RM, Dinger MC, Lundell I, Larhammer D, Beck-Sickinger AG. Novel analogues of neuropeptide Y with a preference for the Y1-receptor. Eur J Biochem. 2001; 268: 2828-2837.
- 131Zwanziger D, Böhme I, Lindner D, Beck-Sickinger AG. First selective agonist of the neuropeptide Y1-receptor with reduced size. J Pept Sci. 2009; 15: 856-866.
- 132Hofmann S, Maschauer S, Kuwert T, Beck-Sickinger AG, Prante O. Synthesis and in vitro and in vivo evaluation of an 18F-labeled neuropeptide Y analogue for imaging of breast cancer by PET. Mol Pharmaceutics. 2015; 12: 1121-1130.
- 133Khan IU, Zwanziger D, Böhme I, et al. Breast-cancer diagnosis by neuropeptide Y analogues: from synthesis to clinical application. Angew Chem Int Ed. 2010; 49: 1155-1158.
- 134Böhme D, Beck-Sickinger AG. Controlling toxicity of peptide–drug conjugates by different chemical linker structures. ChemMedChem. 2015; 10: 804-814.
- 135Zwanziger D, Khan IU, Neundorf I, et al. Novel chemically modified analogues of neuropeptide Y for tumor targeting. Bioconjug Chem. 2008; 19: 1430-1438.
- 136Volante M, Rosas R, Allìa E, et al. Somatostatin, cortistatin and their receptors in tumours. Mol Cell Endocrinol. 2008; 286: 219-229.
- 137Fani M, Mansi R, Nicolas GP, Wild D. Radiolabeled somatostatin analogs—a continuously evolving class of radiopharmaceuticals. Cancers. 2022; 14: 1172.
- 138Sanjuan-Sanjuan A, Alors-Perez E, Sanchez-Frías M, et al. Molecular and clinical implications of somatostatin receptor profile and somatostatin analogues treatment in oral cavity squamous cell carcinoma. Cancers. 2021; 13: 4828.
- 139Gomes-Porras M, Cárdenas-Salas J, Álvarez-Escolá C. Somatostatin analogs in clinical practice: a review. Int J Mol Sci. 2020; 21: 1682.
- 140Ishida A, Tajima Y, Okabe Y, et al. Discovery and SAR studies of orally active somatostatin receptor subtype-2 (SSTR2) agonists for the treatment of acromegaly. ACS Chem Neurosci. 2020; 11: 1482-1494.
- 141O'Byrne KJ, Dobbs N, Propper DJ, et al. Phase II study of RC-160 (vapreotide), an octapeptide analogue of somatostatin, in the treatment of metastatic breast cancer. Br J Cancer. 1999; 79: 1413-1418.
- 142Shih W-J, Hirschowitz E, Bensadoun E, Woodring J, Ryo YU, Kraman S. Biodistribution on Tc-99m labeled somatostatin receptor-binding peptide (Depreotide, NeoTec) planar and SPECT studies. Ann Nucl Med. 2002; 16: 213-219.
- 143Van Den Bossche B, Van Belle S, De Winter F, et al. Early prediction of endocrine therapy effect in advanced breast cancer patients using 99mTc-depreotide scintigraphy. J Nucl Med. 2006; 47: 6-13.
- 144Kéri G, Schwab R, Szokoloczi O, Szüts T, Szolcsanyi J. TT-232: an anti-tumour and anti-inflammatory peptide therapeutic in clinical development. Int J Pept Res Ther. 2005; 11: 3-15.
- 145Hannes L, Stephen A, Jeroen D, et al. 8F-labeled somatostatin analogs as PET tracers for the somatostatin receptor: ready for clinical use. J Nucl Med. 2023; 64: 835.
- 146Forssell-Aronsson E, Bernhardt P, Nilsson O, Tisell LE, Wängberg B, Ahlman H. Biodistribution data from 100 patients i.v. injected with 111in-DTPA-D-Phe1-Octreotide. Acta Oncol. 2004; 43: 436-442.
- 147Seitz S, Schally AV, Treszl A, et al. Preclinical evaluation of properties of a new targeted cytotoxic somatostatin analog, AN-162 (AEZS-124), and its effects on tumor growth inhibition. Anti-Cancer Drugs. 2009; 20: 553-558.
- 148Huang CM, Wu YT, Chen ST. Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis. Chem Biol. 2000; 7: 453-461.
- 149Ragozin E, Hesin A, Bazylevich A, et al. New somatostatin-drug conjugates for effective targeting pancreatic cancer. Bioorg Med Chem. 2018; 26: 3825-3836.
- 150Sun LC, Mackey LV, Luo J, Fuselier JA, Coy DH. Targeted chemotherapy using a cytotoxic somatostatin conjugate to inhibit tumor growth and metastasis in nude mice. Clin Med Oncol. 2008; 2: CMO.S970.
10.4137/CMO.S970 Google Scholar
- 151Pryyma A, Matinkhoo K, Bu YJ, et al. Synthesis and preliminary evaluation of octreotate conjugates of bioactive synthetic amatoxins for targeting somatostatin receptor (sstr2) expressing cells. RSC Chem Biol. 2022; 3: 69-78.
- 152Flanagan CA, Manilall A. Gonadotropin-releasing hormone (GnRH) receptor structure and GnRH binding. Front Endocrinol. 2017; 8: 274-285.
- 153Ghaly HSA, Varamini P. New drug delivery strategies targeting the GnRH receptor in breast and other cancers. Endocr Relat Cancer. 2021; 28: R251-R269.
- 154Coss D. Regulation of reproduction via tight control of gonadotropin hormone levels. Mol Cell Endocrinol. 2018; 463: 116-130.
- 155Yang X, Lin G, Xia A, et al. Discovery of small molecule agonist of gonadotropin-releasing hormone receptor (GnRH1R). J Chem Inf Model. 2022; 62: 5009-5022.
- 156Coetsee M, Millar RP, Flanagan CA, Lu ZL. Identification of Tyr290 (6.58) of the human gonadotropin-releasing hormone (GnRH) receptor as a contact residue for both GnRH I and GnRH II: importance for high-affinity binding and receptor activation. Biochemistry. 2008; 47: 10305-10313.
- 157Vrettos EI, Karampelas T, Sayyad N, et al. Development of programmable gemcitabine-GnRH pro-drugs bearing linker controllable “click” oxime bond tethers and preclinical evaluation against prostate cancer. Eur J Med Chem. 2021; 211:113018.
- 158Curtis KK, Sarantopoulos J, Northfelt DW, et al. Novel LHRH-receptor-targeted cytolytic peptide, EP-100: first-in-human phase I study in patients with advanced LHRH-receptor-expressing solid tumors. Cancer Chemother Pharmacol. 2014; 73: 931-941.
- 159Chelariu-Raicu A, Nick A, Urban R, et al. A multicenter open-label randomized phase II trial of paclitaxel plus EP-100, a novel LHRH receptor-targeted, membrane-disrupting peptide, versus paclitaxel alone for refractory or recurrent ovarian cancer. Gynecol Oncol. 2021; 160: 418-426.
- 160Murányi J, Varga A, Gyulavári P, et al. Novel Crizotinib–GnRH conjugates revealed the significance of lysosomal trapping in GnRH-based drug delivery systems. Int J Mol Sci. 2019; 20: 5590.
- 161Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020; 77: 1745-1770.
- 162Sheldrake HM, Patterson LH. Strategies to inhibit tumor associated integrin receptors: rationale for dual and multi-antagonists: miniperspective. J Med Chem. 2014; 57: 6301-6315.
- 163Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Sem Cancer Biol. 2020; 62: 166-181.
- 164Wagenlehner FME, Dittmar F. Re: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Eur Urol. 2022; 82: 658.
- 165Wei Y, Wu J, Chen Y, et al. Efficacy and safety of PL-5 (peceleganan) spray for wound infections: a phase IIb randomized clinical trial. Ann Surg. 2023; 277: 43-49.
- 166Nibbering PH, Ravensbergen E, Welling MM, et al. Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infect Immun. 2001; 69: 1469-1476.
- 167Li G, Lai Z, Shan A. Advances of antimicrobial peptide-based biomaterials for the treatment of bacterial infections. Adv Sci. 2023; 10:2206602.
- 168Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML. Antimicrobial peptides as anticancer agents: functional properties and biological activities. Molecules. 2020; 25: 2850.
- 169Xiang S, Han N, Xie Y, et al. Antimicrobial peptides in treatment of Stage III Grade B periodontitis: a randomized clinical trial. Oral Dis. 2023: 1-10.
- 170Luo X, Chen H, Song Y, et al. Advancements, challenges and future perspectives on peptide-based drugs: focus on antimicrobial peptides. Eur J Pharm Sci. 2023; 181:106363.
- 171Zhu Y, Akhtar MU, Li B, et al. The design of cell-selective tryptophan and arginine-rich antimicrobial peptides by introducing hydrophilic uncharged residues. Acta Biomater. 2022; 153: 557-572.
- 172Barman P, Joshi S, Sharma S, Preet S, Sharma S, Saini A. Strategic approaches to improvise peptide drugs as next generation therapeutics. Int J Pept Res Ther. 2023; 29: 61.
- 173Jafari A, Babajani A, Sarrami Forooshani R, et al. Clinical applications and anticancer effects of antimicrobial peptides: from bench to bedside. Front Oncol. 2022; 12:819563.
- 174Selvaraj SP, Chen J-Y. Conjugation of antimicrobial peptides to enhance therapeutic efficacy. Eur J Med Chem. 2023; 259:115680.
- 175Zhou X, Smith QR, Liu X. Brain penetrating peptides and peptide–drug conjugates to overcome the blood–brain barrier and target CNS diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021; 13: 1695-1703.
- 176Stupp R, Hegi ME, Gorlia T, et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2014; 15: 1100-1108.
- 177Rizvi SFA, Ali A, Ahmad M, Mu S, Zhang H. Multifunctional self-assembled peptide nanoparticles for multimodal imaging-guided enhanced theranostic applications against glioblastoma multiforme. Nanoscale Adv. 2021; 3: 5959-5967.
- 178Rizvi SFA, Ahmad M, Munib F, Zhang H. Preclinical assessment of Alzheimer's disease using novel designed 99mTc-labeled RGD-based pro-apoptotic cyclic peptide as a promising SPECT agent. Appl Organomet Chem. 2022; 36: 6569-6574.
- 179Ryppa C, Mann-Steinberg H, Fichtner I, et al. In vitro and in vivo evaluation of doxorubicin conjugates with the divalent peptide E-[c (RGDfK) 2] that targets integrin αvβ3. Bioconjug Chem. 2008; 19: 1414-1422.
- 180Raoof F, Munawar A, Ahmad M, Rizvi S, Ali Z, Shahid AB. Multifunctional iron oxide nanocarriers synthesis for drug delivery, diagnostic imaging, and biodistribution study. Appl Biochem Biotechnol. 2023; 195: 4469-4484.
- 181Davoodi Z, Shafiee F. Internalizing RGD, a great motif for targeted peptide and protein delivery: a review article. Drug Delivery Transl Res. 2022; 12: 2261-2274.
- 182Hao G, Xu ZP, Li L. Manipulating extracellular tumour pH: an effective target for cancer therapy. RSC Adv. 2018; 8: 22182-22192.
- 183Pérez-Herrero E, Fernández-Medarde A. The reversed intra- and extracellular pH in tumors as a unified strategy to chemotherapeutic delivery using targeted nanocarriers. Acta Pharm Sin B. 2021; 11: 2243-2264.
- 184Vrettos EI, Mező G, Tzakos AG. On the design principles of peptide–drug conjugates for targeted drug delivery to the malignant tumor site. Beilstein J Org Chem. 2018; 14: 930-954.
- 185Yang Y, Wang S, Ma P, et al. Drug conjugate-based anticancer therapy - current status and perspectives. Cancer Lett. 2023; 552:215969.
- 186Ghosh AK, Brindisi M. Organic carbamates in drug design and medicinal chemistry. J Med Chem. 2015; 58: 2895-2940.
- 187Kurzrock R, Gabrail N, Chandhasin C, et al. Safety, pharmacokinetics, and activity of GRN1005, a novel conjugate of angiopep-2, a peptide facilitating brain penetration, and paclitaxel, in patients with advanced solid tumors. Mol Cancer Ther. 2012; 11: 308-316.
- 188Das S, Al-Toubah T, El-Haddad G, Strosberg J. 177Lu-DOTATATE for the treatment of gastroenteropancreatic neuroendocrine tumors. Expert Rev Gastroenterol Hepatol. 2019; 13: 1023-1031.
- 189Sun LC, H. Coy D. Somatostatin receptor-targeted anti-cancer therapy. Curr Drug Delivery. 2011; 8: 2-10.
- 190Liang Y, Li S, Wang X, et al. A comparative study of the antitumor efficacy of peptide-doxorubicin conjugates with different linkers. J Controlled Release. 2018; 275: 129-141.
- 191Langer M, Kratz F, Rothen-Rutishauser B, Wunderli-Allenspach H, Beck-Sickinger AG. Novel peptide conjugates for tumor-specific chemotherapy. J Med Chem. 2001; 44: 1341-1348.
- 192Liang Y, Li S, Wang X, et al. A comparative study of the antitumor efficacy of peptide-doxorubicin conjugates with different linkers. J Controlled Release. 2018; 275: 129-141.
- 193Kanwal S, Naveed M, Arshad A, et al. Reduction-sensitive dextran–paclitaxel polymer–drug conjugate: synthesis, self-assembly into nanoparticles, and in vitro anticancer efficacy. Bioconjug Chem. 2021; 32: 2516-2529.
- 194Bargh JD, Walsh SJ, Isidro-Llobet A, Omarjee S, Carroll JS, Spring DR. Sulfatase-cleavable linkers for antibody-drug conjugates. Chem Sci. 2020; 11: 2375-2380.
- 195Denmeade SR, Mhaka AM, Rosen DM, et al. Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy. Sci Transl Med. 2012; 4: 140-186.
- 196Wang L, Chen H, Wang F, Zhang X. The development of peptide-drug conjugates (PDCs) strategies for paclitaxel. Expert Opin Drug Delivery. 2022; 19: 147-161.
- 197Fabbro D. 25 years of small molecular weight kinase inhibitors: potentials and limitations. Mol Pharmacol. 2015; 87: 766-775.
- 198Lingor P, Weber M, Camu W, et al. ROCK-ALS: protocol for a randomized, placebo-controlled, double-blind phase IIa trial of safety, tolerability and efficacy of the rho kinase (ROCK) inhibitor fasudil in amyotrophic lateral sclerosis. Front Neurol. 2019; 10: 293.
- 199Xu W, Ye C, Qing X, et al. Multi-target tyrosine kinase inhibitor nanoparticle delivery systems for cancer therapy. Materials Today Bio. 2022; 16:100358.
- 200Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018; 16: 71.
- 201Tran VA, Thuan Le V, Doan VD, Vo G. Utilization of functionalized metal–organic framework nanoparticle as targeted drug delivery system for cancer therapy. Pharmaceutics. 2023; 15: 931.
- 202Yang J, Yang Y-W. Metal–organic frameworks for biomedical applications. Small. 2020; 16:1906846.
- 203Jiang Z, Guan J, Qian J, Zhan C. Peptide ligand-mediated targeted drug delivery of nanomedicines. Biomater Sci. 2019; 7: 461-471.
- 204Taylor KML, Rieter WJ, Lin W. Manganese-based nanoscale metal− organic frameworks for magnetic resonance imaging. J Am Chem Soc. 2008; 130: 14358-14359.
- 205Rowe MD, Thamm DH, Kraft SL, Boyes SG. Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules. 2009; 10: 983-993.
- 206Wang X-G, Dong Z-Y, Cheng H, et al. A multifunctional metal–organic framework based tumor targeting drug delivery system for cancer therapy. Nanoscale. 2015; 7: 16061-16070.
- 207Jia J, Zhang Y, Zheng M, et al. Functionalized Eu (III)-based nanoscale metal–organic framework to achieve near-IR-triggered and-targeted two-photon absorption photodynamic therapy. Inorganic Chem. 2018; 57: 300-310.
- 208Liu J, Guo Z, Kordanovski M, et al. Metal-organic frameworks as protective matrices for peptide therapeutics. J Colloid Interface Sci. 2020; 576: 356-363.
- 209Tong P-H, Zhu L, Zang Y, Li J, He XP, James TD. Metal–organic frameworks (MOFs) as host materials for the enhanced delivery of biomacromolecular therapeutics. Chem Commun. 2021; 57: 12098-12110.
- 210Masoudifar R, Pouyanfar N, Liu D, et al. Surface engineered metal-organic frameworks as active targeting nanomedicines for mono- and multi-therapy. Applied Materials Today. 2022; 29:101646.
- 211Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther. 2004; 1: 279-293.
- 212Haase M, Schäfer H. Upconverting nanoparticles. Angew Chem Int Ed. 2011; 50: 5808-5829.
- 213Tian Y, Tian Y, Huang P, Wang L, Shi Q, Cui C. Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route. Chem Eng J. 2016; 297: 26-34.
- 214Boyer J-C, van Veggel FCJM. Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale. 2010; 2: 1417-1419.
- 215Lu Y, Zhao J, Zhang R, et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photonics. 2014; 8: 32-36.
- 216Duan C, Liang L, Li L, Zhang R, Xu ZP. Recent progress in upconversion luminescence nanomaterials for biomedical applications. J Mater Chem B. 2018; 6: 192-209.
- 217Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev. 2014; 114: 5161-5214.
- 218Xiang J, Xu L, Gong H, et al. Antigen-loaded upconversion nanoparticles for dendritic cell stimulation, tracking, and vaccination in dendritic cell-based immunotherapy. ACS Nano. 2015; 9: 6401-6411.
- 219Xu J, Xu L, Wang C, et al. Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano. 2017; 11: 4463-4474.
- 220Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem. 2009; 81: 8687-8694.
- 221Ai F, Wang N, Zhang X, et al. An upconversion nanoplatform with extracellular pH-driven tumor-targeting ability for improved photodynamic therapy. Nanoscale. 2018; 10: 4432-4441.
- 222Zako T, Nagata H, Terada N, et al. Cyclic RGD peptide-labeled upconversion nanophosphors for tumor cell-targeted imaging. Biochem Biophys Res Commun. 2009; 381: 54-58.
- 223Ryu J, Park H-Y, Kim K, et al. Facile synthesis of ultrasmall and hexagonal NaGdF4: Yb3+, Er3+ nanoparticles with magnetic and upconversion imaging properties. The J Phys Chem C. 2010; 114: 21077-21082.
- 224Chan Y-C, Chen C-W, Chan M-H, et al. MMP2-sensing up-conversion nanoparticle for fluorescence biosensing in head and neck cancer cells. Biosens Bioelectron. 2016; 80: 131-139.
- 225Chan M-H, Lai C-Y, Chan Y-C, et al. Development of upconversion nanoparticle-conjugated indium phosphide quantum dot for matrix metalloproteinase-2 cancer transformation sensing. Nanomedicine. 2019; 14: 1791-1804.
- 226Zhou A, Wei Y, Wu B, Chen Q, Xing D. Pyropheophorbide A and c (RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy. Mol Pharmaceutics. 2012; 9: 1580-1589.
- 227Li X, Liu L, Fu Y, et al. Peptide-enhanced tumor accumulation of upconversion nanoparticles for sensitive upconversion luminescence/magnetic resonance dual-mode bioimaging of colorectal tumors. Acta Biomater. 2020; 104: 167-175.