Bacterial diversity in the clarki ecotype of the photosynthetic sacoglossan, Elysia crispata
Corresponding Author
Padmanabhan Mahadevan
Department of Biology, The University of Tampa, Tampa, Florida, USA
Correspondence
Padmanabhan Mahadevan and Michael L. Middlebrooks, Department of Biology, The University of Tampa, 401 W. Kennedy Blvd, Tampa, FL 33606.
Emails: [email protected] (PM); [email protected] (MLM)
Contribution: Conceptualization (equal), Formal analysis (lead), Funding acquisition (equal), Investigation (equal), Methodology (equal), Software (lead), Validation (equal), Visualization (lead), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Michael L. Middlebrooks
Department of Biology, The University of Tampa, Tampa, Florida, USA
Correspondence
Padmanabhan Mahadevan and Michael L. Middlebrooks, Department of Biology, The University of Tampa, 401 W. Kennedy Blvd, Tampa, FL 33606.
Emails: [email protected] (PM); [email protected] (MLM)
Contribution: Conceptualization (equal), Formal analysis (supporting), Funding acquisition (equal), Investigation (equal), Methodology (equal), Software (supporting), Validation (equal), Visualization (supporting), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Padmanabhan Mahadevan
Department of Biology, The University of Tampa, Tampa, Florida, USA
Correspondence
Padmanabhan Mahadevan and Michael L. Middlebrooks, Department of Biology, The University of Tampa, 401 W. Kennedy Blvd, Tampa, FL 33606.
Emails: [email protected] (PM); [email protected] (MLM)
Contribution: Conceptualization (equal), Formal analysis (lead), Funding acquisition (equal), Investigation (equal), Methodology (equal), Software (lead), Validation (equal), Visualization (lead), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Michael L. Middlebrooks
Department of Biology, The University of Tampa, Tampa, Florida, USA
Correspondence
Padmanabhan Mahadevan and Michael L. Middlebrooks, Department of Biology, The University of Tampa, 401 W. Kennedy Blvd, Tampa, FL 33606.
Emails: [email protected] (PM); [email protected] (MLM)
Contribution: Conceptualization (equal), Formal analysis (supporting), Funding acquisition (equal), Investigation (equal), Methodology (equal), Software (supporting), Validation (equal), Visualization (supporting), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorAbstract
Few studies have examined the bacterial communities associated with photosynthetic sacoglossan sea slugs. In this study, we determined the bacterial diversity in the clarki ecotype, Elysia crispata using 16S rRNA sequencing. Computational analysis using QIIME2 revealed variability between individual samples, with the Spirochaetes and Bacteroidetes phyla dominating most samples. Tenericutes and Proteobacteria were also found, among other phyla. Computational metabolic profiling of the bacteria revealed a variety of metabolic pathways involving carbohydrate metabolism, lipid metabolism, nucleotide metabolism, and amino acid metabolism. Although associated bacteria may be involved in mutually beneficial metabolic pathways, there was a high degree of variation in the bacterial community of individual slugs. This suggests that many of these relationships are likely opportunistic rather than obligate and that many of these bacteria may live commensally providing no major benefit to the slugs.
CONFLICT OF INTEREST
None declared.
Open Research
DATA AVAILABILITY STATEMENT
The sequence data from this study are available in the NCBI repository under the BioProject ID PRJNA607610: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA607610.
REFERENCES
- Becerro, M. A., Goetz, G., Paul, V. J., & Scheuer, P. J. (2001). Chemical defenses of the sacoglossan mollusk Elysia rufescens and its host Alga bryopsis sp. Journal of Chemical Ecology, 27(11), 2287–2299. https://doi.org/10.1023/a:1012287105923
- Bentzon-Tilia, M., Severin, I., Hansen, L. H., & Riemann, L. (2015). Genomics and ecophysiology of heterotrophic nitrogen-fixing bacteria isolated from estuarine surface water. Mbio, 6(4), e00929. https://doi.org/10.1128/mBio.00929-15
- Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., … Gregory, C. J. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome, 6(1), 90. https://doi.org/10.1186/s40168-018-0470-z
- Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., … Caporaso, J. G. (2019). Reproducible, interactive, scalable, and extensible microbiome data science using QIIME2. Nature Biotechnology, 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9
- Brune, A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology, 12(3), 168–180. https://doi.org/10.1038/nrmicro3182
- Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869
- Carareto Alves, L. M., de Souza, J. A. M., Varani, A. M., & Lemos, E. G. M. (2014). The family Rhizobiaceae. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The prokaryotes. Berlin, Heidelberg: Springer.
10.1007/978-3-642-30197-1_297 Google Scholar
- Chen, M., Li, Y., Li, S., Tang, L., Zheng, J., & An, Q. (2016). Genomic identification of nitrogen-fixing Klebsiella variicola, K. pneumoniae and K. quasipneumoniae. Journal of Basic Microbiology, 56(1), 78–84. https://doi.org/10.1002/jobm.201500415
- Citti, C., Dordet-Frisoni, E., Nouvel, L. X., Kuo, C. H., & Baranowski, E. (2018). Horizontal gene transfers in mycoplasmas (Mollicutes). Current Issues in Molecular Biology, 29, 3–22. https://doi.org/10.21775/cimb.029.003
- Clark, K. B. (1994). Ascoglossan (Sacoglossa) molluscs in the Florida Keys: Rare marine invertebrates at special risk. Bulletin of Marine Science, 54, 900–916.
- Curtis, N. E., Middlebrooks, M. L., Schwartz, J. A., & Pierce, S. K. (2015). Kleptoplastic sacoglossan species have very different capacities for plastid maintenance despite utilizing the same algal donors. Symbiosis, 65, 23–31. https://doi.org/10.1007/s13199-015-0317-3
- Davis, J. (2015). Characterization of the bacterial communities associated with the tropical sacoglossan mollusks Elysia rufescens and Elysia crispata. Dissertation. University of Maryland.
- Davis, J., Fricke, W. F., Hamann, M. T., Esquenazi, E., Dorrestein, P. C., & Hill, R. T. (2013). Characterization of the bacterial community of the chemically defended Hawaiian sacoglossan Elysia rufescens. Applied and Environment Microbiology, 79(22), 7073–7081. https://doi.org/10.1128/AEM.01568-13
- Devine, S. P., Pelletreau, K. N., & Rumpho, M. E. (2012). 16S rDNA-based metagenomic analysis of bacterial diversity associated with two populations of the kleptoplastic sea slug Elysia chlorotica and its algal prey Vaucheria litorea. Biological Bulletin, 223(1), 138–154. https://doi.org/10.1086/BBLv223n1p138
- Fernández-Gómez, B., Richter, M., Schüler, M., Pinhassi, J., Acinas, S. G., González, J. M., & Pedrós-Alió, C. (2013). Ecology of marine Bacteroidetes: A comparative genomics approach. ISME Journal, 7(5), 1026–1037. https://doi.org/10.1038/ismej.2012.169
- Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincón, J., Zabala, L. L., Jiao, N., … Martiny, A. C. (2013). Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 9824–9829. https://doi.org/10.1073/pnas.1307701110
- Gobet, A., Mest, L., Perennou, M., Dittami, S. M., Caralp, C., Coulombet, C., … Leblanc, C. (2018). Seasonal and algal diet-driven patterns of the digestive microbiota of the European abalone Haliotis tuberculata, a generalist marine herbivore. Microbiome, 6(1), 60. https://doi.org/10.1186/s40168-018-0430-7
- Hollants, J., Leroux, O., Leliaert, F., Decleyre, H., De Clerck, O., & Willems, A. (2011). Who is in there? Exploration of endophytic bacteria within the siphonous green seaweed Bryopsis (Bryopsidales, Chlorophyta). PLoS One, 6(10), e26458. https://doi.org/10.1371/journal.pone.0026458
- Iwai, S., Weinmaier, T., Schmidt, B. L., Albertson, D. G., Poloso, N. J., Dabbagh, K., & DeSantis, T. Z. (2016). Piphillin: Improved prediction of metagenomic content by direct inference from human microbiomes. PLoS One, 11(11), e0166104. https://doi.org/10.1371/journal.pone.0166104
- Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., & Morishima, K. (2017). KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research, 45(D1), D353–D361. https://doi.org/10.1093/nar/gkw1092
- Karp, P. D., Billington, R., Caspi, R., Fulcher, C. A., Latendresse, M., Kothari, A., … Subhraveti, P. (2019). The BioCyc collection of microbial genomes and metabolic pathways. Briefings in Bioinformatics, 20(4), 1085–1093. https://doi.org/10.1093/bib/bbx085
- Katoh, K., Asimenos, G., & Toh, H. (2009). Multiple alignment of DNA sequences with MAFFT. Methods in Molecular Biology, 537, 39–64. https://doi.org/10.1007/978-1-59745-251-9_3
- Kellogg, C. A., Ross, S. W., & Brooke, S. D. (2016). Bacterial community diversity of the deep-sea octocoral Paramuricea placomus. PeerJ, 4, e2529. https://doi.org/10.7717/peerj.2529
- Kirchman, D. L. (2002). The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiology Ecology, 39(2), 91–100. https://doi.org/10.1111/j.1574-6941.2002.tb00910.x
- Krug, P. J., Händeler, K., & Vendetti, J. (2011). Genes, morphology, development, and photosynthetic ability support resurrection of Elysia cornigera (Heterobranchia: Plakobranchoidea) as distinct from the ‘solar powered’ sea slug, E. timida. Invertebrate Systematics, 25, 477–489. https://doi.org/10.1071/is11026
- Krug, P. J., Vendetti, J. E., & Valdés, Á. (2016). Molecular and morphological systematics of Elysia Risso, 1818 (Heterobranchia: Sacoglossa) from the Caribbean region. Zootaxa, 4148, 1–137. https://doi.org/10.11646/zootaxa.4148.1.1
- Kurahashi, M., & Yokota, A. (2007). Endozoicomonas elysicola gen. nov., sp. nov., a gamma-proteobacterium isolated from the sea slug Elysia ornata. Systematic and Applied Microbiology, 30, 202–206. https://doi.org/10.1016/j.syapm.2006.07.003
- Leadbetter, J. R., Schmidt, T. M., Graber, J. R., & Breznak, J. A. (1999). Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science, 283(5402), 686–689. https://doi.org/10.1126/science.283.5402.686
- Letunic, I., & Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Research, 47, W256–W259. https://doi.org/10.1093/nar/gkz239
- Lilburn, T. G., Kim, K. S., Ostrom, N. E., Byzek, K. R., Leadbetter, J. R., & Breznak, J. A. (2001). Nitrogen fixation by symbiotic and free-living spirochetes. Science, 292(5526), 2495–2498. https://doi.org/10.1126/science.1060281
- Marin, A., & Ros, J. (2004). Chemical defenses in sacoglossan opisthobranchs: Taxonomic trends and evolutive implications. Scientia Marina, 68, 227–241. https://doi.org/10.3989/scimar.2004.68s1227
- Middlebrooks, M. L., Bell, S. S., Curtis, N. E., & Pierce, S. K. (2014). Atypical plant–herbivore association of algal food and a kleptoplastic sea slug (Elysia clarki) revealed by DNA barcoding and field surveys. Marine Biology, 161, 1429–1440. https://doi.org/10.1007/s00227-014-2431-9
- Middlebrooks, M. L., Curits, N. E., & Pierce, S. K. (2020). The complete disappearance of a long standing sacoglossan sea slug population following Hurricane Irma, despite recovery of the local algal community. Symbiosis, 80(3), 231–237. https://doi.org/10.1007/s13199-020-00670-3
- Middlebrooks, M. L., Curtis, N. E., & Pierce, S. K. (2019). Algal sources of sequestered chloroplasts in the sacoglossan sea slug, Elysia crispata, varies by location and ecotype. Biological Bulletin, 236(2), 88–96. https://doi.org/10.1086/701732
- Middlebrooks, M. L., Pierce, S. K., & Bell, S. S. (2011). Foraging behavior under starvation conditions is altered via photosynthesis by the marine gastropod, Elysia clarki. PLoS One, 6(7), e22162. https://doi.org/10.1371/journal.pone.0022162
- Middlebrooks, M. L., Pierce, S. K., & Bell, S. S. (2012). The kleptoplastic sea slug Elysia clarki prolongs photosynthesis by synthesizing chlorophyll a and b. Symbiosis, 57, 127–132. https://doi.org/10.1007/s13199-012-0187-x
- Mohamed, N. M., Saito, K., Tal, Y., & Hill, R. T. (2010). Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME Journal, 4(1), 38–48. https://doi.org/10.1038/ismej.2009.84
- Mondy, W. L., & Pierce, S. K. (2003). Apoptotic-like morphology is associated with the annual synchronized death of a population of kleptoplastic sea slugs (Elysia chlorotica). Invertebrate Biology, 122, 126–137. https://doi.org/10.1111/j.1744-7410.2003.tb00078.x
- Neave, M. J., Michell, C. T., Apprill, A., & Voolstra, C. R. (2017). Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Scientific Reports, 7, 40579. https://doi.org/10.1038/srep40579
- Paley, S., Parker, K., Spaulding, A., Tomb, J. F., O'Maille, P., & Karp, P. D. (2017). The Omics Dashboard for interactive exploration of gene-expression data. Nucleic Acids Research, 45(21), 12113–12124. https://doi.org/10.1093/nar/gkx910
- Papagianni, M., & Papamichael, E. M. (2011). Purification, amino acid sequence and characterization of the class IIa bacteriocin weissellin A, produced by Weissella paramesenteroides DX. Bioresource Technology, 102(12), 6730–6734. https://doi.org/10.1016/j.biortech.2011.03.106
- Pierce, S. K., Biron, R. W., & Rumpho, M. E. (1996). Endosymbiotic chloroplasts in molluscan cells contain proteins synthesized after plastid capture. Journal of Experimental Biology, 199, 2323–2330.
- Pierce, S. K., & Curtis, N. E. (2012). Cell biology of the chloroplast symbiosis in sacoglossan sea slugs. International Review of Cell and Molecular Biology, 293, 123–148. https://doi.org/10.1016/B978-0-12-394304-0.00009-9
- Pierce, S. K., Curtis, N. E., Massey, S. E., Bass, A. L., Karl, S. A., & Finney, C. (2006). A morphological and molecular comparison between Elysia crispata and a new species of kleptoplastic sacoglossan sea slug (Gastropoda: Opisthobranchia) from the Florida Keys, USA. Molluscan Research, 26, 23–38.
- Pierce, S. K., Curtis, N. E., & Middlebrooks, M. L. (2015). Sacoglossan Sea slugs make routine use of photosynthesis by a variety of species-specific adaptations. Invertebrate Biology, 134, 103–115. https://doi.org/10.1111/ivb.12082
- Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One, 5(3), e94900. https://doi.org/10.1371/journal.pone.0009490
- Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., … Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590–D596. https://doi.org/10.1093/nar/gks1219
- Rasher, D. B., Stout, E. B., Engel, S., Shearer, T. L., Kubanek, J., & Hay, M. E. (2015). Marine and terrestrial herbivores display convergent chemical ecology despite 400 million years of independent evolution. Proceedings of the National Academy of Sciences of the United States of America, 112, 12110–12115. https://doi.org/10.1073/pnas.1508133112
- Ritchie, K. B. (2006). Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Marine Ecology Progress Series, 322, 1–14. https://doi.org/10.3354/meps322001
- Ruby, E. G. (1996). Lessons from a cooperative, bacterial-animal association: The Vibrio fischeri–Euprymna scolopes Light Organ Symbiosis. Annual Review of Microbiology, 50(1), 591–624. https://doi.org/10.1146/annurev.micro.50.1.591
- Shashar, N., Walter Cohen, Y., Loya, Y., & Sar, N. (1994). Nitrogen fixation (acetylene reduction) in stony corals: Evidence for coral-bacteria interactions. Marine Ecology Progress Series, 111(3), 259–264.
- Shnit-Orland, M., & Kushmaro, A. (2009). Coral mucus-associated bacteria: A possible first line of defense. FEMS Microbiology Ecology, 67(3), 371–380. https://doi.org/10.1111/j.1574-6941.2008.00644.x
- Swan, B. K., Martinez-Garcia, M., Preston, C. M., Sczyrba, A., Woyke, T., Lamy, D., … Stepanauskas, R. (2011). Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science, 333(6047), 1296–1300. https://doi.org/10.1126/science.1203690
- Taylor, J. D., & Glover, E. A. (2010). Chemosymbiotic bivalves. In S. Kiel (Ed.), The vent and seep biota. Topics in geobiology (Vol. 33). Dordrecht, Netherlands: Springer.
10.1007/978-90-481-9572-5_5 Google Scholar
- Tokuda, G., Mikaelyan, A., Fukui, C., Matsuura, Y., Watanabe, H., Fujishima, M., & Brune, A. (2018). Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proceedings of the National Academy of Sciences of the United States of America, 115(51), E11996–E12004. https://doi.org/10.1073/pnas.1810550115
- Wilkinson, C., & Fay, P. (1979). Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature, 279, 527–529. https://doi.org/10.1038/279527a0
- Xie, Y., Hu, Q., Feng, G., Jiang, X., Hu, J., He, M., … Peng, N. (2018). Biodetoxification of phenolic inhibitors from lignocellulose pretreatment using Kurthia huakuii LAM0618T and subsequent lactic acid fermentation. Molecules, 23(10), pii:E2626. https://doi.org/10.3390/molecules23102626
- Zan, J., Li, Z., Tianero, M. D., Davis, J., Hill, R. T., & Donia, M. S. (2019). A microbial factory for defensive kahalalides in a tripartite marine symbiosis. Science, 364(6445), eaaw6732. https://doi.org/10.1126/science.aaw6732