Quantum-Chemical Modeling of Free-Radical Polymerization
Corresponding Author
Michelle L. Coote
ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra ACT 0200, AustraliaSearch for more papers by this authorCorresponding Author
Michelle L. Coote
ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra ACT 0200, AustraliaSearch for more papers by this authorAbstract
This article reviews recent progress in the application of quantum chemistry to radical polymerization processes, with a principle focus on establishing the current ‘best-practice’ methodology for obtaining chemically accurate calculations. The scope and limitations of computational chemistry for this field are also discussed, and some of its leading applications in the areas of ab initio kinetic modeling and computer-aided reagent design are highlighted.
References
- 1
- 1a M. L. Coote, M. D. Zammit, T. P. Davis, Trends Polym. Sci. 1996, 4, 189;
- 1b A. M. van Herk, Macromol. Theory Simul. 2000, 9, 433;
- 1c S. Beuermann, M. Buback, Prog. Polym. Sci. 2002, 27, 191;
- 1d C. Barner-Kowollik, M. Buback, M. Egorov, T. Fukuda, A. Goto, O. F. Olaj, G. T. Russell, P. Vana, B. Yamada, P. B. Zetterlund, Prog. Polym. Sci. 2005, 30, 605.
- 2
- 2a J. P. A. Heuts, Sudarko, R. G. Gilbert, Macromol. Symp. 1996, 111, 147;
- 2b J. P. A. Heuts, R. G. Gilbert, I. A. Maxwell, Macromolecules 1997, 30, 726;
- 2c M. L. Coote, T. P. Davis, L. Radom, THEOCHEM 1999, 461–462, 91;
- 2d M. L. Coote, T. P. Davis, L. Radom, Macromolecules 1999, 32, 5270;
- 2e M. L. Coote, T. P. Davis, L. Radom, Macromolecules 1999, 32, 2935;
- 2f P. Cieplak, A. Kaim, J. Polym. Sci., A 2004, 42, 1557.
- 3
- 3a J. Purmova, K. F. D. Pauwels, W. van Zoelen, E. J. Vorenkamp, A. J. Schouten, M. L. Coote, Macromolecules 2005, 38, 6352;
- 3b K. Van Cauter, B. J. Van Den Bossche, V. Van Speybroeck, M. Waroquier, Macromolecules 2007, 40, 1321;
- 3c J. Purmová, K. F. D. Pauwels, M. Agostini, M. Bruinsma, E. J. Vorenkamp, A. J. Schouten, M. L. Coote, Macromolecules 2008, 41, 5527.
- 4
- 4a G. Leroy, J.-P. Dewispelaere, H. Benkadour, C. Wilante, Macromol. Theory Simul. 1996, 5, 269;
- 4b J. P. A. Heuts, R. G. Gilbert, L. Radom, J. Phys. Chem. 1996, 100, 18997;
- 4c D. M. Huang, M. J. Monteiro, R. G. Gilbert, Macromolecules 1998, 31, 5175;
- 4d J. S.-S. Toh, D. M. Huang, P. A. Lovell, R. G. Gilbert, Polymer 2001, 42, 1915;
- 4e J. Filley, J. T. Mc Kinnon, D. T. Wu, G. H. Ko, Macromolecules 2002, 35, 3731;
- 4f C.-G. Zhan, D. A. Dixon, J. Phys. Chem. A 2002, 106, 10311;
- 4g S. C. Thickett, R. G. Gilbert, Polymer 2004, 45, 6993;
- 4h K. Van Cauter, K. Hemelsoet, V. Van Speybroeck, M. F. Reyniers, M. Waroquier, Int. J. Quantum Chem. 2004, 102, 454;
- 4i S. Salman, A. Z. Albayrak, D. Avci, V. Aviyente, J. Polym. Sci., A 2005, 43, 2574;
- 4j H. Günaydin, S. Salman, N. S. Tüzün, D. Avci, V. Aviyente, Int. J. Quantum Chem. 2005, 103, 176;
- 4k E. I. Izgorodina, M. L. Coote, Chem. Phys. 2006, 324, 96;
- 4l K. Van Cauter, V. Van Speybroeck, P. Vansteenkiste, M.-F. Reyniers, M. Waroquier, ChemPhysChem 2006, 7, 131;
- 4m I. Degirmenci, D. Avci, V. Aviyente, K. Van Cauter, V. Van Speybroeck, M. Waroquier, Macromolecules 2007, 40, 9590;
- 4n I. Degirmenci, V. Aviyente, V. Van Speybroeck, M. Waroquier, Macromolecules 2009, 42, 3033.
- 5
- 5a M. B. Gillies, K. Matyjaszewski, P.-O. Norrby, T. Pintauer, R. Poli, P. Richard, Macromolecules 2003, 36, 8551;
- 5b D. A. Singleton, D. T. Nowlan, III, N. Jahed, K. Matyjaszewski, Macromolecules 2003, 36, 8609;
- 5c K. Matyjaszewski, R. Poli, Macromolecules 2005, 38, 8093;
- 5d C. Y. Lin, M. L. Coote, A. Petit, P. Richard, R. Poli, K. Matyjaszewski, Macromolecules 2007, 40, 5985;
- 5e W. Tang, Y. Kwak, W. Braunecker, N. V. Tsarevsky, M. L. Coote, K. Matyjaszewski, J. Am. Chem. Soc. 2008, 130, 10702;
- 5f C. Y. Lin, M. L. Coote, A. Gennaro, K. Matyjaszewski, J. Am. Chem. Soc. 2008, 130, 12762.
- 6
- 6a P. Marsal, M. Roche, P. Tordo, P. de Sainte Claire, J. Phys. Chem. A 1999, 103, 2899;
- 6b D. Gigmes, A. Gaudel-Siri, S. R. A. Marque, D. Bertin, P. Tordo, P. Astolfi, L. Greci, C. Rizzoli, Helv. Chim. Acta 2006, 89, 2312;
- 6c A. Kaim, E. Megiel, J. Polym. Sci., A 2005, 44, 914;
- 6d A. Kaim, J. Polym. Sci., A 2006, 45, 232;
- 6e E. Megiel, A. Kaim, J. Polym. Sci., A 2008, 46, 1165.
- 7
- 7a S. C. Farmer, T. E. Patten, J. Polym. Sci., A Polym. Chem. 2002, A40, 555.
- 7b M. L. Coote, L. Radom, J. Am. Chem. Soc. 2003, 125, 1490;
- 7c M. L. Coote, L. Radom, Macromolecules 2004, 37, 590;
- 7d M. L. Coote, Macromolecules 2004, 37, 5023;
- 7e A. Feldermann, M. L. Coote, M. H. Stenzel, T. P. Davis, C. Barner-Kowollik, J. Am. Chem. Soc. 2004, 126, 15915;
- 7f M. L. Coote, D. J. Henry, Macromolecules 2005, 38, 1415;
- 7g M. L. Coote, J. Phys. Chem. A 2005, 109, 1230;
- 7h M. L. Coote, E. H. Krenske, E. I. Izgorodina, Macromol. Rapid Commun. 2006, 27, 473;
- 7i E. I. Izgorodina, M. L. Coote, Macromol. Theory Simul. 2006, 15, 394;
- 7j M. L. Coote, E. I. Izgorodina, E. H. Krenske, M. Busch, C. Barner-Kowollik, Macromol. Rapid Commun. 2006, 27, 1015;
- 7k H. Chaffey-Millar, M. H. Stenzel, T. P. Davis, M. L. Coote, C. Barner-Kowollik, Macromolecules 2006, 39, 6406;
- 7l C. Y. Lin, M. L. Coote, Aust. J. Chem. 2009, in press (CH09269);
- 7m L. Nebhani, S. Sinnwell, C. Y. Lin, M. L. Coote, M. H. Stenzel, C. Barner-Kowollik, J. Polym. Sci., A Chem. 2009, in press (JPOL-A-09-0575).
- 8
- 8a A. Ah Toy, H. Chaffey-Millar, T. P. Davis, M. H. Stenzel, E. I. Izgorodina, M. L. Coote, C. Barner-Kowollik, Chem. Commun. 2006, 835;
- 8b H. Chaffey-Millar, E. I. Izgorodina, C. Barner-Kowollik, M. L. Coote, J. Chem. Theory Comput. 2006, 2, 1632.
- 9 A. Debuigne, Y. Champouret, R. Jerome, R. Poli, C. Detrembleur, Chem. Eur. J. 2008, 14, 4046.
- 10
- 10a M. L. Coote, D. J. Henry, Macromolecules 2005, 38, 5774;
- 10b M. L. Coote, E. I. Izgorodina, G. E. Cavigliasso, M. Roth, M. Busch, C. Barner-Kowollik, Macromolecules 2006, 39, 4585.
- 11
- 11a A. Theis, M. H. Stenzel, T. P. Davis, M. L. Coote, C. Barner-Kowollik, Aust. J. Chem. 2005, 58, 437;
- 11b C. W. Barner-Kowollik, M. L. Coote, T. P. Davis, M. H. Stenzel, A. Theis, Polymerization agent. 2006 International Patent Number WO2006122344 A1.
- 12 P. Zetterlund, W. Busfield, I. Jenkins, Macromolecules 1999, 32, 8041.
- 13 M. L. Coote, T. P. Davis, Prog. Polym. Sci. 1999, 24, 1217.
- 14
- 14a J. L. Hodgson, M. L. Coote, Macromolecules 2005, 38, 8902;
- 14b M. L. Coote, J. L. Hodgson, E. H. Krenske, M. Namazian, S. B. Wild, Aust. J. Chem. 2007, 60, 744.
- 15For a review of the early work in this field see:
H. Fischer,
L. Radom,
Angew. Chem., Int. Ed.
2001,
40,
1340.
10.1002/1521-3773(20010417)40:8<1340::AID-ANIE1340>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 16
- 16a M. L. Coote, G. P. F. Wood, L. Radom, J. Phys. Chem. A 2002, 106, 12124;
- 16b M. L. Coote, J. Phys. Chem. A 2004, 108, 3865;
- 16c R. Gómez-Balderas, M. L. Coote, D. J. Henry, L. Radom, J. Phys. Chem. A 2004, 108, 2874.
- 17 E. I. Izgorodina, C. Y. Lin, M. L. Coote, Phys. Chem. Chem. Phys. 2007, 9, 2507.
- 18
- 18a C. C. Choi, M. Kertesz, A. Karpfen, Chem. Phys. Lett. 1997, 276, 266;
- 18b L. A. Curtiss, K. Raghavachari, P. C. Redfern, J. A. Pople, J. Chem. Phys. 2000, 112, 7374;
- 18c H. L. Woodcock, H. F. Schaefer, III, P. R. Schreiner, J. Phys. Chem. A 2002, 106, 11923;
- 18d E. I. Izgorodina, M. C. Coote, L. Radom, J. Phys. Chem. A 2005, 109, 7558;
- 18e C. E. Check, T. M. Gilbert, J. Org. Chem. 2005, 70, 9828;
- 18f E. I. Izgorodina, M. L. Coote, J. Phys. Chem. A 2006, 110, 2486;
- 18g S. Grimme, Angew. Chem., Int. Ed. 2006, 45, 4460;
- 18h P. R. Schreiner, A. A. Fokin, R. A. Pascal, Jr., A. de Meijere, Org. Lett. 2006, 8, 3635;
- 18i M. D. Wodrich, C. Corminbœf, P. von Ragué Schleyer, Org. Lett. 2006, 8, 3631;
- 18j M. D. Wodrich, C. Corminbœf, P. R. Schreiner, A. A. Fokin, P. von Ragué Schleyer, Org. Lett. 2007, 9, 1851;
- 18k S. Grimme, M. Steinmetz, M. Korth, J. Chem. Theory Comput. 2007, 3, 42;
- 18l P. R. Schreiner, Angew. Chem., Int. Ed. 2007, 46, 4217;
- 18m E. I. Izgorodina, D. R. B. Brittain, J. L. Hodgson, E. H. Krenske, C. Y. Lin, M. Namazian, M. L. Coote, J. Phys. Chem. A 2007, 111, 10754;
- 18n D. R. B. Brittain, C. Y. Lin, A. T. B. Gilbert, E. I. Izgorodina, P. M. W. Gill, M. L. Coote, Phys. Chem. Chem. Phys. 2009, 11, 1138.
- 19 M. Buback, H. Hippler, J. Schweer, H.-P. Vogele, Makromol. Chem. Rapid Commun. 1986, 7, 261.
- 20
- 20a A. Kajiwara, M. Kamachi, Macromol. Chem. Phys. 2000, 201, 2165;
- 20b G. M. Burnett, W. W. Wright, Proc. R. Soc. (Lond.) A 1954, 211, 41.
- 21 C. Y. Lin, J. L. Hodgson, M. Namazian, M. L. Coote, J. Phys. Chem. A 2009, 113, 3690.
- 22
- 22a For textbooks on transition state theory and statistical thermodynamics, see for example: S. W. Benson, Thermochemical Kinetics, John Wiley & Sons, New York 1976;
- 22b D. A. McQuarrie, Statistical Mechanics, Harper & Row, New York 1976;
- 22c R. G. Gilbert, S. C. Smith, Theory of Unimolecular and Recombination Reactions, Blackwell Scientific, Oxford 1990;
- 22d J. I. Steinfeld, J. S. Francisco, W. L. Hase, Chemical Kinetics and Dynamics, 2nd edition. Prentice-Hall, Englewood Cliffs, NJ 1999;
- 22e P. W. Atkins, Physical Chemistry, 6th edition, W.H. Freeman and Company. San Franscisco: 2000.
- 23For a recent review, see: A. Fernandez-Ramos, J. A. Miller, S. J. Klippenstein, D. G. Truhlar, Chem. Rev. 2006, 106, 4518.
- 24 M. L. Coote, M. A. Collins, L. Radom, Mol. Phys. 2003, 101, 1329.
- 25 B. A. Ellingson, V. A. Lynch, S. L. Mielke, D. G. Truhlar, J. Chem. Phys. 2006, 125, 084305.
- 26 C. Y. Lin, E. I. Izgorodina, M. L. Coote, J. Phys. Chem. A 2008, 112, 1956.
- 27 M. L. Coote, T. P. Davis, B. Klumperman, M. J. Monteiro, J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1998, C38, 567.
- 28 S. Beuermann, M. Buback, P. Hesse, F.-D. Kuchta, I. Lacik, A. M. Van Herk, Pure Appl. Chem. 2007, 79( 8), 1463.
- 29 D. A. Morrison, T. P. Davis, Macromol. Chem. Phys. 2000, 201, 2128.
- 30 A. Klamt, G. Schueuermann, J. Chem. Soc., Perkin Trans. 1993, 2, 799.
- 31 M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669.
- 32 S. Miertus, E. Scrocco, J. Tomasi, J. Chem. Phys. 1981, 55, 117.
- 33 J. Tomasi, Theor. Chem. Acc. 2004, 112, 184.
- 34
- 34a A. Klamt, J. Phys. Chem. 1995, 99, 2224;
- 34b A. Klamt, COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design Elsevier Science Ltd, Amsterdam, The Netherlands 2005;
- 34c A. Klamt, V. Jonas, T. Burger, J. C. W. Lohrenz, J. Phys. Chem. A 1998, 102, 5074.
- 35 C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Chem. Theory Comput. 2005, 1, 1133.
- 36 Y. Takano, K. N. Houk, J. Chem. Theory Comput. 2005, 1, 70.
- 37
- 37a See for example: M. Namazian, M. L. Coote, J. Phys. Chem. A 2007, 111 7227;
- 37b J. L. Hodgson, M. Namazian, S. E. Bottle, M. L. Coote, J. Phys. Chem. A 2007, 111, 13595;
- 37c M. Namazian, H. R. Zare, M. L. Coote, Biophys. Chem. 2008, 132, 64;
- 37d M. Namazian, S. Siahrostami, M. L. Coote, J. Fluorine Chem. 2008, 129, 222;
- 37e J. P. Blinco, J. L. Hodgson, B. J. Morrow, J. R. Walker, G. D. Will, M. L. Coote, S. E. Bottle, J. Org. Chem. 2008, 73, 6763;
- 37f H. Zare, M. Eslami, M. Namazian, M. L. Coote, J. Phys. Chem. B 2009, 113, 8080.
- 38See for example: J. Ho, M. L. Coote, J. Chem. Theory Comput. 2009, 5, 295.
- 39
- 39a See for example: J. R. Pliego, Jr., J. M. Riveros, J. Phys. Chem. A 2002, 106 7434;
- 39b Y. Fu, L. Liu, R.-Q. Li, R. Liu, Q.-X. Guo, J. Am. Chem. Soc. 2004, 126, 814;
- 39c C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2006, 110, 2493.
- 40
- 40a For details on how to correct for diffusion effects, see for example: D. R. D'hooge, M. F. Reyniers, G. B. Marin, Macromol. React. Eng. 2009, 3 185;
- 40b G. Johnston-Hall, C. Barner-Kowollik, M. J. Monteiro, Macromol. Theory Simul. 2008, 17, 460;
- 40c G. Johnston-Hall, M. J. Monteiro, J. Poly. Sci. A Chem. 2008, 46, 3155;
- 40d G. Johnston-Hall, M. J. Monteiro, Macromolecules, 2007, 40, 7171.
- 41 J. B. McLeary, F. M. Calitz, J. M. McKenzie, M. P. Tonge, R. D. Sanderson, B. Klumperman, Macromolecules 2004, 37, 2382.
- 42For a review of radical stability, see: H. Zipse, Top. Curr. Chem. 2006, 263, 163.
- 43
- 43a For reviews of the curve-crossing model, see: A. Pross, S. S. Shaik, Acc. Chem. Res. 1983, 16 363;
- 43b A. Pross, Adv. Phys. Org. Chem. 1985, 21, 99;
- 43c S. S. Shaik, Prog. Phys. Org. Chem. 1985, 15, 197.
- 44
- 44a For a successful example based on empirical parameters, see for example: H. Fischer, S. R. A. Marque, P. Nesvadba, Helv. Chim. Acta 2006, 89 2330;
- 44b S. R. A. Marque, J. Org. Chem. 2003, 68, 7582;
- 44c D. Bertin, D. Gigmes, S. R. A. Marque, P. Tordo, Macromolecules 2005, 38, 2638.
- 45 D. Griller, K. Ingold, Acc. Chem. Res. 1976, 9, 13.
- 46This assumption is thought to be reasonable for most carbon centred radicals, but may break down in other systems. For a discussion of these problems, see: M. L. Coote, A. B. Dickerson, Aust. J. Chem. 2008, 61, 163.
- 47 K. D. Beare, M. L. Coote, J. Phys. Chem. A 2004, 108, 7211.
- 48 D. J. Henry, M. L. Coote, R. Gómez-Balderas, L. Radom, J. Am. Chem. Soc. 2004, 126, 1732.
- 49 J. L. Hodgson, K. A. Green, M. L. Coote, Org. Lett. 2005 7, 4581.