Tailoring the Architecture of Molecular Bottlebrushes via Click Grafting-Onto Strategy
Corresponding Author
Yi Shi
School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorWangmeng Hou
School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006 China
Search for more papers by this authorZheqi Li
School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Yongming Chen
School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yi Shi
School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorWangmeng Hou
School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006 China
Search for more papers by this authorZheqi Li
School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Yongming Chen
School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Molecular bottlebrush (MBB) refer to a synthetic macromolecule, in which a mass of polymeric side chains (SCs) are covalently connected to a macromolecular backbone densely, representing an important type of unimolecular nanomaterial. The chemical composition, size, shape, and surface property of MBB can be precisely tailored by varying the backbones and SCs as well as the grafting density (Gdst). Meanwhile, the topological structure of backbones and SCs can also significantly affect the chemical and physical properties of MBBs. For the past few years, by combining the structure features of MBB, the polymers with diverse architectures using MBB as building block are synthesized, including linear, branched, and cyclic MBB etc. These promising architectural features will bring MBBs with diverse architectures and lots of applications in advanced materials. For this reason, this work is interested in giving a briefly summary of the recent progress on tailor of well-defined MBBs with diverse architectures using grafting-onto strategy combined with controlled polymerization technique.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1Z. Li, M. Tang, S. Liang, M. Zhang, G. M. Biesold, Y. He, S. M. Hao, W. Choi, Y. Liu, J. Peng, Z. Lin, Prog. Polym. Sci. 2021, 116, 101387.
- 2G. Xie, M. R. Martinez, M. Olszewski, S. S. Sheiko, K. Matyjaszewski, Biomacromolecules 2019, 20, 27.
- 3a) Z. Sun, R. Liu, T. Su, H. Huang, K. Kawamoto, R. Liang, B. Liu, M. Zhong, A. Alexander-Katz, C. A. Ross, J. A. Johnson, Nat. Nanotechnol. 2023, 18, 273; b) Z. H. Guo, A. N. Le, X. Feng, Y. Choo, B. Liu, D. Wang, Z. Wan, Y. Gu, J. Zhao, V. Li, C. O. Osuji, J. A. Johnson, M. Zhong, Angew. Chem., Int. Ed. 2018, 57, 8493; c) A. Detappe, H. V.-T. Nguyen, Y. Jiang, M. P. Agius, W. Wang, C. Mathieu, N. K. Su, S. L. Kristufek, D. J. Lundberg, S. Bhagchandani, I. M. Ghobrial, P. P. Ghoroghchian, J. A. Johnson, Nat. Nanotechnol. 2023, 18, 184; d) J. A. Johnson, Y. Y. Lu, A. O. Burts, Y. H. Lim, M. G. Finn, J. T. Koberstein, N. J. Turro, D. A. Tirrell, R. H. Grubbs, J. Am. Chem. Soc. 2011, 133, 559; e) Q. Guo, R. Xue, J. Zhao, Y. Zhang, G. T. Van De Kerkhof, K. Zhang, Y. Li, S. Vignolini, D. P. Song, Angew. Chem., Int. Ed. 2022, 61, e202206723; f) Y. L. Li, X. Chen, H. K. Geng, Y. Dong, B. Wang, Z. Ma, L. Pan, G. Q. Ma, D. P. Song, Y. S. Li, Angew. Chem., Int. Ed. 2021, 60, 3647; g) Z. Sun, H. Li, H. Huang, Y. Shi, Y. Chen, Acta Polym. Sin. 2020, 51, 609; h) Z. Sun, D. Qiao, Y. Shi, M. Barz, L. Liu, Y. Chen, Nano Lett. 2021, 21, 7236.
- 4C. Qu, Y. Shi, B. Jing, H. Gao, Y. Zhu, ACS Macro Lett. 2016, 5, 402.
- 5a) Y. Xia, B. D. Olsen, J. A. Kornfield, R. H. Grubbs, J. Am. Chem. Soc. 2009, 131, 18525; b) Y. Xia, A. J. Boydston, R. H. Grubbs, Angew. Chem., Int. Ed. 2011, 50, 5882; c) K. H. Kim, J. Nam, J. Choi, M. Seo, J. Bang, Polym. Chem. 2022, 13, 2224.
- 6a) C. Chen, K. Wunderlich, D. Mukherji, K. Koynov, A. J. Heck, M. Raabe, M. Barz, G. Fytas, K. Kremer, D. Y. W. Ng, T. Weil, J. Am. Chem. Soc. 2020, 142, 1332; b) X. Fu, Z. H. Guo, A. n. N. Le, J. Lei, M. Zhong, Polym. Chem. 2020, 11, 270.
- 7a) W. Hou, Z. Li, L. Xu, Y. Li, Y. Shi, Y. Chen, ACS Macro Lett. 2021, 10, 1260; b) W. Hou, J. Wu, Z. Li, Z. Zhang, Y. Shi, Y. Chen, Macromolecules 2023, 56, 824.
- 8W. Gan, Y. Shi, B. Jing, X. Cao, Y. Zhu, H. Gao, Macromolecules 2017, 50, 215.
- 9a) Y. Shi, W. Zhu, D. Yao, M. Long, B. o. Peng, K. e. Zhang, Y. Chen, ACS Macro Lett. 2014, 3, 70; b) M. Long, Y. i. Shi, K. e. Zhang, Y. Chen, Macromol. Rapid Commun. 2016, 37, 605; c) Y. C. Yan, H. H. Huang, W. Zhu, L. X. Liu, K. Zhang, Y. M. Chen, Acta Polym. Sin. 2017, 9, 1531.
- 10a) Y. Shi, G. Liu, H. Gao, L. Lu, Y. Cai, Macromolecules 2009, 42, 3917;
b) Y. Shi, H. Gao, L. Lu, Y. Cai, Chem. Commun. 2009, 45, 1368;
10.1039/b821486g Google Scholarc) N. Corrigan, J. Yeow, P. Judzewitsch, J. Xu, C. Boyer, Angew. Chem., Int. Ed. 2019, 58, 5170; d) P. R. Judzewitsch, T.-K. Nguyen, S. Shanmugam, E. H. H. Wong, C. Boyer, Angew. Chem., Int. Ed. 2018, 57, 4559; e) M. Cao, Y. Liu, X. Zhang, F. Li, M. Zhong, Chem 2022, 8, 1460.
- 11Z. Hu, Y. Chen, H. Huang, L. Liu, Y. Chen, Macromolecules 2018, 51, 2526.
- 12a) R. Liang, Y. Xue, X. Fu, A. n. N. Le, Q. Song, Y. Qiang, Q. Xie, R. Dong, Z. Sun, C. O. Osuji, J. A. Johnson, W. Li, M. Zhong, Nat. Mater. 2022, 21, 1434; b) F. Vohidov, L. E. Milling, Q. Chen, W. Zhang, S. Bhagchandani, H. V.-T. Nguyen, D. J. Irvine, J. A. Johnson, Chem. Sci. 2020, 11, 5974; c) P. Shieh, H. V. T. Nguyen, J. A. Johnson, Nat. Chem. 2019, 11, 1124; d) H. V. T. Nguyen, N. M. Gallagher, F. Vohidov, Y. Jiang, K. Kawamoto, H. Zhang, J. V. Park, Z. Huang, M. F. Ottaviani, A. Rajca, J. A. Johnson, ACS Macro Lett. 2018, 7, 472.
- 13a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem., Int. Ed. 2001, 40, 2004;
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholarb) H. Gao, K. Matyjaszewski, J. Am. Chem. Soc. 2007, 129, 6633; c) A. C. Engler, H. l. Lee, P. T. Hammond, Angew. Chem., Int. Ed. 2009, 48, 9334; d) Y. Shi, X. Cao, H. Gao, Nanoscale 2016, 8, 4864.
- 14a) A. H. S. t. Amant, E. H. Discekici, S. J. Bailey, M. S. Zayas, J. A. H. Song, S. L. Shankel, S. N. Nguyen, M. W. Bates, A. Anastasaki, C. J. Hawker, J. Read De Alaniz, J. Am. Chem. Soc. 2019, 141, 13619; b) S. J. Bailey, E. H. Discekici, S. M. Barbon, S. N. Nguyen, C. J. Hawker, J. Read De Alaniz, Macromolecules 2020, 53, 4917; c) Z. Li, W. Hou, Y. Li, J. Xu, Y. Shi, Y. Chen, Macromolecules 2021, 54, 10031.
- 15J. Sun, J. Hu, G. Liu, D. Xiao, G. He, R. Lu, J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 1282.
- 16a) Y. Yan, Y. Shi, W. Zhu, Y. Chen, Polymer 2013, 54, 5634; b) P. Zhao, Y. Yan, X. Feng, L. Liu, C. Wang, Y. Chen, Polymer 2012, 53, 1992.
- 17P. Zhao, L. Liu, X. Feng, C. Wang, X. Shuai, Y. Chen, Macromol. Rapid Commun. 2012, 33, 1351.
- 18a) D. Mecerreyes, B. Atthoff, K. A. Boduch, M. Trollsås, J. L. Hedrick, Macromolecules 1999, 32, 5175; b) S. Lenoir, R. Riva, X. Lou, C. h. Detrembleur, R. Jérôme, P. h. Lecomte, Macromolecules 2004, 37, 4055.
- 19Y. Shi, X. Wang, R. W. Graff, W. A. Phillip, H. Gao, J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 239.
- 20a) Y. Chen, H. Zhou, Z. Sun, H. Li, H. Huang, L. Liu, Y. Chen, Polymer 2018, 149, 316; b) Y. Chen, Z. Sun, H. Li, Y. Dai, Z. Hu, H. Huang, Y. Shi, Y. Li, Y. Chen, ACS Macro Lett. 2019, 8, 749; c) Y. Dai, Z. Hu, X. Wang, X. Liu, Y. Li, Y. Shi, Y. Chen, Polym. Chem. 2021, 12, 2592.
- 21S. Billiet, K. De Bruycker, F. Driessen, H. Goossens, V. Van Speybroeck, J. M. Winne, F. E. Du Prez, Nat. Chem. 2014, 6, 815.
- 22L. Xiao, Y. Chen, K. Zhang, Macromolecules 2016, 49, 4452.
- 23B. Helms, J. L. Mynar, C. J. Hawker, J. M. J. Fréchet, J. Am. Chem. Soc. 2004, 126, 15020.
- 24Y. Shi, W. Zhu, Y. Chen, Macromolecules 2013, 46, 2391.
- 25H. Kim, K. T. Bang, I. Choi, J. K. Lee, T. L. Choi, J. Am. Chem. Soc. 2016, 138, 8612.
- 26K. T. Bang, H. Kim, S.-Y. Kang, A. Bhaumik, S. Ahn, N. Yun, T.-L. Choi, Macromolecules 2021, 54, 5539.
- 27B. A. Laurent, S. M. Grayson, Chem. Soc. Rev. 2009, 38, 2202.
- 28K. Zhang, M. A. Lackey, Y. Wu, G. N. Tew, J. Am. Chem. Soc. 2011, 133, 6906.
- 29L. Xiao, L. Qu, W. Zhu, Y. Wu, Z. Liu, K. Zhang, Macromolecules 2017, 50, 6762.
- 30C. Yin, R. Wang, Y. Sun, S. Li, X. Zhang, J. Gu, W. Wu, X. Jiang, Nano Today 2021, 41, 101293.
- 31B. A. Laurent, S. M. Grayson, J. Am. Chem. Soc. 2011, 133, 13421.
- 32M. Li, C. Liu, C. Y. Hong, C. Y. Pan, Polymer 2015, 71, 23.
- 33J. H. Gao, Y. H. Xu, Q. Q. Tang, L. F. Xiao, K. Zhang, W. Zhu, Acta Polym. Sin. 2016, 5, 568.
- 34K. Matyjaszewski, S. Qin, J. R. Boyce, D. Shirvanyants, S. S. Sheiko, Macromolecules 2003, 36, 1843.
- 35E. W. Kent, B. Zhao, Macromolecules 2019, 52, 6714.
- 36M. Zhang, J. Wu, Z. Li, W. Hou, Y. Li, Y. Shi, Y. Chen, Polym. Chem. 2022, 13, 4895.
- 37H. Li, H. Liu, T. Nie, Y. Chen, Z. Wang, H. Huang, L. Liu, Y. Chen, Biomaterials 2018, 178, 620.
- 38B. Peng, H. Liang, Y. Li, C. Dong, J. Shen, H.-Q. Mao, K. W. Leong, Y. Chen, L. Liu, Angew. Chem., Int. Ed. 2019, 58, 4254.
- 39L. u. Xu, Q. Zhang, L. Lu, Y. Shi, L. Liu, J. Shen, Y. Chen, Nano Lett. 2022, 22, 4090.