Cellulose Nanocrystal (CNC)–Latex Nanocomposites: Effect of CNC Hydrophilicity and Charge on Rheological, Mechanical, and Adhesive Properties
Amir Saeid Pakdel
Department of Chemical and Biological EngineeringCentre for Catalysis Research and Innovation, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, ON, K1N 6N5 Canada
Search for more papers by this authorElina Niinivaara
Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4 Canada
Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI0076 Aalto, Espoo, 02150 Finland
Search for more papers by this authorEmily D. Cranston
Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4 Canada
Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3 Canada
Search for more papers by this authorRichard M. Berry
CelluForce, 625 President Kennedy Ave., Suite 1705, Montreal, QC, H3A 1K2 Canada
Search for more papers by this authorCorresponding Author
Marc A. Dubé
Department of Chemical and Biological EngineeringCentre for Catalysis Research and Innovation, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, ON, K1N 6N5 Canada
E-mail: [email protected]
Search for more papers by this authorAmir Saeid Pakdel
Department of Chemical and Biological EngineeringCentre for Catalysis Research and Innovation, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, ON, K1N 6N5 Canada
Search for more papers by this authorElina Niinivaara
Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4 Canada
Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI0076 Aalto, Espoo, 02150 Finland
Search for more papers by this authorEmily D. Cranston
Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4 Canada
Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3 Canada
Search for more papers by this authorRichard M. Berry
CelluForce, 625 President Kennedy Ave., Suite 1705, Montreal, QC, H3A 1K2 Canada
Search for more papers by this authorCorresponding Author
Marc A. Dubé
Department of Chemical and Biological EngineeringCentre for Catalysis Research and Innovation, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, ON, K1N 6N5 Canada
E-mail: [email protected]
Search for more papers by this authorAbstract
Cellulose nanocrystals (CNCs), a sustainable nanomaterial, are in situ incorporated into emulsion-based pressure-sensitive adhesives (PSAs). Commercially available CNCs with different surface hydrophilicity and surface charge (CNC101 and CNC103 from CelluForce) are used to explore their role in PSA property modification. Viscosity measurements and atomic force microscopy reveal differences in degree of association between the CNCs and the latex particles depending on the surface properties of the CNCs. The more hydrophilic and higher surface charge CNCs (CNC101) show less association with the latex particles. Dynamic strain sweep tests are used to analyze the strain-softening of the nanocomposites based on CNC type and loading. The CNC101 nanocomposites soften at lower strains than their CNC103 counterparts. This behavior is confirmed via dynamic frequency tests and modeling of the nanocomposites’ storage moduli, which suggest the formation of CNC aggregates of, on average, 3.8 CNC101 and 1.3 CNC103 nanoparticles. Finally, PSA properties, i.e., tack, peel strength, and shear strength, simultaneously increase upon addition of both CNC types, although to different extents. The relationship between the PSA properties and CNC surface properties confirms that the less hydrophilic CNCs lead to improved CNC dispersion in the PSA films and therefore, enhance PSA properties.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
marc202000448-sup-0001-SuppMat.pdf1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. J. Crosby, J. Y. Lee, Polym. Rev. 2007, 47, 217.
- 2A. C. Balazs, T. Emrick, T. P. Russell, Science 2006, 314, 1107.
- 3R. Geyer, J. R. Jambeck, K. L. Law, Sci. Adv. 2017, 3, e1700782.
- 4M. A. Dubé, S. Salehpour, Macromol. React. Eng. 2014, 8, 7.
- 5M. A. Dubé, V. A. Gabriel, A. S. Pakdel, Y. Zhang, Can. J. Chem. Eng. 2020, https://doi.org/10.1002/cjce.23865.
- 6A. Gandini, T. M. Lacerda, Prog. Polym. Sci. 2015, 48, 1.
- 7Y. Habibi, L. A. Lucia, O. J. Rojas, Chem. Rev. 2010, 110, 3479.
- 8M. Roman, Ind. Biotechnol. 2015, 11, 25.
- 9D. Klemm, E. D. Cranston, D. Fischer, M. Gama, S. A. Kedzior, D. Kralisch, F. Kramer, T. Kondo, T. Lindström, S. Nietzsche, K. Petzold-welcke, F. Rauchfuß, Mater. Today 2018, 21, 720.
- 10C. Miao, W. Y. Hamad, Curr. Opin. Solid State Mater. Sci. 2019, 23, 100761.
- 11S. Beck, J. Bouchard, R. Berry, Biomacromolecules 2012, 13, 1486.
- 12S. A. Kedzior, V. A. Gabriel, M. A. Dubé, E. D. Cranston, Adv. Mater. 2020, https://doi.org/10.1002/adma.202002404.
- 13Y. Zhang, M. A. Dubé, Adv. Polym. Sci. 2018, 280, 65.
- 14C. Chern, Principles and Applications of Emulsion Polymerization, John Wiley & Sons, Hoboken, NJ 2008.
10.1002/9780470377949 Google Scholar
- 15A. S. Pakdel, M. Rezaei Behbahani, M. R. Saeb, H. A. Khonakdar, H. Abedini, M. Moghri, J. Vinyl Addit. Technol. 2015, 21, 157.
- 16A. S. Pakdel, S. Pourmahdian, H. Eslami, Macromol. Chem. Phys. 2012, 213, 1944.
- 17V. Favier, H. Chanzy, J. Y. Cavaillé, Macromolecules 1995, 28, 6365.
- 18V. Favier, G. R. Canova, J. Y. Cavaille, H. Chanzy, A. Dufresne, C. Gauthie, Polym. Adv. Technol. 1995, 6, 351.
- 19B. Vollick, P. Y. Kuo, M. Alizadehgiashi, N. Yan, E. Kumacheva, ACS Omega 2017, 2, 5928.
- 20A. Ben Mabrouk, M. C. B. Salon, A. Magnin, M. N. Belgacem, S. Boufi, Colloids Surf., A 2014, 448, 1.
- 21E. Limousin, N. Ballard, J. M. Asua, Polym. Chem. 2019, 10, 1823.
- 22I. Kalashnikova, H. Bizot, B. Cathala, I. Capron, Langmuir 2011, 27, 7471.
- 23I. Kalashnikova, H. Bizot, P. Bertoncini, B. Cathala, I. Capron, Soft Matter 2013, 9, 952.
- 24S. A. Kedzior, H. S. Marway, E. D. Cranston, Macromolecules 2017, 50, 2645.
- 25Y. Zhang, V. Karimkhani, B. T. Makowski, G. Samaranayake, S. J. Rowan, Macromolecules 2017, 50, 6032.
- 26S. A. Kedzior, M. Kiriakou, E. Niinivaara, M. A. Dubé, C. Fraschini, R. M. Berry, E. D. Cranston, ACS Macro Lett. 2018, 7, 990.
- 27I. Benedek, Pressure-Sensitive Adhesives and Applications, Marcel Dekker, Inc, New York, NY 2004.
10.1201/9780203021163 Google Scholar
- 28Z. Dastjerdi, E. D. Cranston, M. A. Dubé, Macromol. React. Eng. 2017, 11, 1700013.
- 29Z. Dastjerdi, E. D. Cranston, M. A. Dubé, Int. J. Adhes. Adhes. 2018, 81, 36.
- 30M. Karimi Shamsabadi, M. R. Moghbeli, Int. J. Adhes. Adhes. 2017, 78, 155.
- 31A. Ouzas, E. Niinivaara, E. D. Cranston, M. A. Dubé, Macromol. React. Eng. 2018, 12, 170068.
- 32A. S. Pakdel, V. Gabriel, R. M. Berry, C. Fraschini, E. D. Cranston, M. A. Dubé, Cellulose 2020, https://doi.org/10.1007/s10570-020-03060-6.
- 33F. V. Ferreira, I. F. Pinheiro, R. F. Gouveia, G. P. Thim, L. M. F. Lona, Polym. Compos. 2018, 39, E9.
- 34K. Chi, J. M. Catchmark, Cellulose 2017, 24, 4845.
- 35A. Dufresne, Curr. Opin. Colloid Interface Sci. 2017, 29, 1.
- 36S. X. Peng, S. Shrestha, Y. Yoo, J. P. Youngblood, Polymer 2017, 112, 359.
- 37E. Limousin, I. Rafaniello, T. Schäfer, N. Ballard, J. M. Asua, Langmuir 2020, 36, 2052.
- 38F. Cherhal, F. Cousin, I. Capron, Biomacromolecules 2016, 17, 496.
- 39A. R. Harikrishnan, P. Dhar, P. K. Agnihotri, S. Gedupudi, S. K. Das, Eur. Phys. J. E: Soft Matter Biol. Phys. 2017, 40, 16.
- 40U. Kästner, Colloids Surf., A 2001, 183–185, 805.
- 41E. J. Schaller, in Emulsion Polymerization and Emulsion Polymers (Eds: P. A. Lovell, M. S. El-Aasser), John Wiley and Sons Ltd, Chichester, England 1997, Ch. 13.
- 42J. M. Buffa, U. Casado, V. Mucci, M. I. Aranguren, Cellulose 2019, 26, 2317.
- 43Q. Wu, Y. Meng, S. Wang, Y. Li, S. Fu, L. Ma, D. Harper, J. Appl. Polym. Sci. 2014, 131, 40525.
- 44L. Zhou, H. He, M. C. Li, K. Song, H. N. Cheng, Q. Wu, Carbohydr. Polym. 2016, 153, 445.
- 45F. Grüneberger, T. Künniger, T. Zimmermann, M. Arnold, Cellulose 2014, 21, 1313.
- 46P. A. Kralchevsky, N. D. Denkov, Curr. Opin. Colloid Interface Sci. 2001, 6, 383.
- 47E. Dickinson, J. Colloid Interface Sci. 1989, 132, 274.
- 48X. Sun, C. Danumah, Y. Liu, Y. Boluk, Chem. Eng. J. 2012, 198–199, 476.
- 49H. Oguzlu, Y. Boluk, Cellulose 2017, 24, 131.
- 50L. Manfredi, R. J. Hill, T. G. M. Van de Ven, J. Colloid Interface Sci. 2011, 360, 117.
- 51D. Chen, T. G. M. van de Ven, Colloids Surf., A 2016, 506, 789.
- 52T. Cai, H. Li, R. Yang, Y. Wang, R. Li, H. Yang, A. Li, R. Cheng, Cellulose 2015, 22, 1439.
- 53J. Blockx, A. Verfaillie, S. Eyley, O. Deschaume, C. Bartic, K. Muylaert, W. Thielemans, ACS Appl. Nano Mater. 2019, 2, 3394.
- 54A. R. Payne, J. Appl. Polym. Sci. 1962, 6, 57.
- 55A. Mujtaba, M. Keller, S. Ilisch, H. J. Radusch, T. Thurn-Albrecht, K. Saalwächter, M. Beiner, Macromolecules 2012, 45, 6504.
- 56V. Khoshkava, M. R. Kamal, Biomacromolecules 2013, 14, 3155.
- 57J. Yang, J. J. Zhao, F. Xu, R. C. Sun, ACS Appl. Mater. Interfaces 2013, 5, 12960.
- 58S. D. Tobing, A. Klein, J. Appl. Polym. Sci. 2001, 79, 2230.
- 59L. Qie, M. A. Dubé, Macromol. React. Eng. 2011, 5, 117.
- 60W. P. Flauzino Neto, M. Mariano, I. S. V. da Silva, H. A. Silvério, J. L. Putaux, H. Otaguro, D. Pasquini, A. Dufresne, Carbohydr. Polym. 2016, 153, 143.
- 61D. Chen, D. Lawton, M. R. Thompson, Q. Liu, Carbohydr. Polym. 2012, 90, 709.
- 62M. Takayanagi, S. Uemura, S. Minami, J. Polym. Sci., Part C: Polym. Symp. 1964, 5, 113.
10.1002/polc.5070050111 Google Scholar
- 63N. Ouali, J. Y. Cavaille, J. Perez, Plast., Rubber Compos. Process. Appl. 1991, 16, 55.
- 64J. C. Halpin, J. L. Kardos, Polym. Eng. Sci. 1976, 16, 344.
- 65W. Meesorn, A. Shirole, D. Vanhecke, L. M. De Espinosa, C. Weder, Macromolecules 2017, 50, 2364.
- 66V. Khoshkava, M. R. Kamal, ACS Appl. Mater. Interfaces 2014, 6, 8146.
- 67M. Chau, S. E. Sriskandha, D. Pichugin, H. Thérien-Aubin, D. Nykypanchuk, G. Chauve, M. Méthot, J. Bouchard, O. Gang, E. Kumacheva, Biomacromolecules 2015, 16, 2455.
- 68R. L. Silveira, S. R. Stoyanov, A. Kovalenko, M. S. Skaf, Biomacromolecules 2016, 17, 2582.
- 69L. Lewis, M. Derakhshandeh, S. G. Hatzikiriakos, W. Y. Hamad, M. J. MacLachlan, Biomacromolecules 2016, 17, 2747.
- 70Q. Yu, W. Yang, Q. Wang, W. Dong, M. Du, P. Ma, Carbohydr. Polym. 2019, 217, 168.
- 71F. Deplace, C. Carelli, S. Mariot, H. Retsos, A. Chateauminois, K. Ouzineb, C. Creton, J. Adhes. 2009, 85, 18.
- 72L. Qie, M. A. Dubé, Eur. Polym. J. 2010, 46, 1225.
- 73A. Bellamine, E. Degrandi, M. Gerst, R. Stark, C. Beyers, C. Creton, Macromol. Mater. Eng. 2011, 296, 31.
- 74R. Jovanović, M. A. Dubé, J. Macromol. Sci., Polym. Rev. 2004, 44, 1.