Pd-Catalysed Direct Arylation Polymerisation for Synthesis of Low-Bandgap Conjugated Polymers and Photovoltaic Performance
Shu-Wei Chang
Frontier Research Center on Fundamental and Applied Sciences of Matters, Department of Chemical Engineering, National Tsing-Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
Search for more papers by this authorHuw Waters
School of Electronic Engineering, Bangor University, Dean st., Bangor, Gwynedd, LL57 1UT, Wales, UK
Search for more papers by this authorJeff Kettle
School of Electronic Engineering, Bangor University, Dean st., Bangor, Gwynedd, LL57 1UT, Wales, UK
Search for more papers by this authorZi-Rui Kuo
Frontier Research Center on Fundamental and Applied Sciences of Matters, Department of Chemical Engineering, National Tsing-Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
Search for more papers by this authorChun-Han Li
Frontier Research Center on Fundamental and Applied Sciences of Matters, Department of Chemical Engineering, National Tsing-Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
Search for more papers by this authorChin-Yang Yu
Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei, 106 Taiwan
Search for more papers by this authorCorresponding Author
Masaki Horie
Frontier Research Center on Fundamental and Applied Sciences of Matters, Department of Chemical Engineering, National Tsing-Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
Frontier Research Center on Fundamental and Applied Sciences of Matters, Department of Chemical Engineering, National Tsing-Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan.Search for more papers by this authorShu-Wei Chang
Frontier Research Center on Fundamental and Applied Sciences of Matters, Department of Chemical Engineering, National Tsing-Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
Search for more papers by this authorHuw Waters
School of Electronic Engineering, Bangor University, Dean st., Bangor, Gwynedd, LL57 1UT, Wales, UK
Search for more papers by this authorJeff Kettle
School of Electronic Engineering, Bangor University, Dean st., Bangor, Gwynedd, LL57 1UT, Wales, UK
Search for more papers by this authorZi-Rui Kuo
Frontier Research Center on Fundamental and Applied Sciences of Matters, Department of Chemical Engineering, National Tsing-Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
Search for more papers by this authorChun-Han Li
Frontier Research Center on Fundamental and Applied Sciences of Matters, Department of Chemical Engineering, National Tsing-Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
Search for more papers by this authorChin-Yang Yu
Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei, 106 Taiwan
Search for more papers by this authorCorresponding Author
Masaki Horie
Frontier Research Center on Fundamental and Applied Sciences of Matters, Department of Chemical Engineering, National Tsing-Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
Frontier Research Center on Fundamental and Applied Sciences of Matters, Department of Chemical Engineering, National Tsing-Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan.Search for more papers by this authorAbstract
Low-bandgap conjugated copolymers based on a donor–acceptor structure have been synthesised via palladium-complex catalysed direct arylation polymerisation. Initially, we report the optimisation of the synthesis of poly(cyclopentadithiophene-alt-benzothiadiazole) (PCPDTBT) formed between cyclopentadithiophene and dibromobenzothiadiazole units. The polymerisation condition has been optimised, which affords high-molecular-weight polymers of up to Mn = 70 k using N-methylpyrrolidone as a solvent. The polymers are used to fabricate organic photovoltaic devices and the best performing PCPDTBT device exhibits a moderate improvement over devices fabricated using the related polymer via Suzuki coupling. Similar polymerisation conditions have also been applied for other monomer units.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
marc_201200368_sm_suppl.pdf2.6 MB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 a) A. J. Heeger, Chem. Soc. Rev. 2010, 39, 2354; b) X. W. Zhan, D. B. Zhu, Polym. Chem. 2010, 1, 409; c) S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324.
- 2 a) E. Menard, M. A. Meitl, Y. G. Sun, J. U. Park, D. J. L. Shir, Y. S. Nam, S. Jeon, J. A. Rogers, Chem. Rev. 2007, 107, 1117; b) J. Zaumseil, H. Sirringhaus, Chem. Rev. 2007, 107, 1296; c) A. R. Murphy, J. M. J. Frechet, Chem. Rev. 2007, 107, 1066.
- 3 a) H. Usta, G. Lu, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2006, 128, 9034; b) J. H. Hou, H. Y. Chen, S. Q. Zhang, G. Li, Y. Yang, J. Am. Chem. Soc. 2008, 130, 16144; c) W. Yue, Y. Zhao, S. Y. Shao, H. K. Tian, Z. Y. Xie, Y. H. Geng, F. S. Wang, J. Mater. Chem. 2009, 19, 2199; d) M. I. M . Heeney, C. Bailey, K. Genevicius, M. I. M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. M. Zhang, M. L. Chabinyc, R. J. Kline, M. D. Mcgehee, M. F. Toney, Nat. Mater. 2006, 5, 328; e) Y. Y. Liang, Z. Xu, J. B. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. P. Yu, Adv. Mater. 2010, 22, E135; f) P. M. Beaujuge, W. Pisula, H. N. Tsao, S. Ellinger, K. Mullen, J. R. Reynolds, J. Am. Chem. Soc. 2009, 131, 7514.
- 4 a) J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater. 2007, 6, 497; b) Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Mühlbacher, M. Scharber, C. Brabec, Macromolecules 2007, 40, 1981; c) C. Soci, I. W. Hwang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, A. J. Heeger, Adv. Funct. Mater. 2007, 17, 632; d) M. Morana, M. Wegscheider, A. Bonanni, N. Kopidakis, S. Shaheen, M. Scharber, Z. Zhu, D. Waller, R. Gaudiana, C. Brabec, Adv. Funct. Mater. 2008, 18, 1757; e) M. Morana, H. Azimi, G. Dennler, H. J. Egelhaaf, M. Scharber, K. Forberich, J. Hauch, R. Gaudiana, D. Waller, Z. H. Zhu, K. Hingerl, S. S. van Bavel, J. Loos, C. J. Brabec, Adv. Funct. Mater. 2010, 20, 1180; f) X. Guo, H. Xin, F. S. Kim, A. D. T. Liyanage, S. A. Jenekhe, M. D. Watson, Macromolecules 2011, 44, 269.
- 5 H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, D. Y. Yoon, R. Graf, W. Pisula, H. W. Spiess, K. Mullen, J. Am. Chem. Soc. 2011, 133, 2605.
- 6 a) M. Lafrance, C. N. Rowley, T. K. Woo, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 8754; b) D. R. Stuart, K. Fagnou, Science 2007, 316, 1172; c) L. C. Campeau, M. Bertrand-Laperle, J. P. Leclerc, E. Villemure, S. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 2008, 130, 3276; d) D. Lapointe, K. Fagnou, Chem. Lett. 2010, 39, 1119.
- 7 a) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792; b) H. Q. Do, O. Daugulis, J. Am. Chem. Soc. 2008, 130, 1128; c) D. H. Lee, K. H. Kwon, C. S. Yi, Science 2011, 333, 1613; d) A. Mori, A. Sekiguchi, K. Masui, T. Shimada, M. Horie, K. Osakada, M. Kawamoto, T. Ikeda, J. Am. Chem. Soc. 2003, 125, 1700.
- 8 a) Q. F. Wang, R. Takita, Y. Kikuzaki, F. Ozawa, J. Am. Chem. Soc. 2010, 132, 11420; b) Q. F. Wang, W. Masayuki, F. Ozawa, Macromol. Rapid Commun. 2012, 33, 1203.
- 9 a) A. Facchetti, L. Vaccaro, A. Marrocchi, Angew. Chem. Int. Ed. 2012, 51, 3520; b) P. Berrouard, A. Najari, A. Pron, D. Gendron, P. O. Morin, J.-R. Pouliot, J. Veilleux, M. Leclerc, Angew. Chem. Int. Ed. 2012, 51, 2068.
- 10 a) W. Lu, J. Kuwabara, T. Kanbara, Macromolecules 2011, 44, 1252; b) Y. Fujinami, J. Kuwabara, W. Lu, H. Hayashi, T. Kanbara, ACS Macro Lett. 2012, 1, 67.
- 11 S. Kowalski, S. Allard, U. Scherf, ACS Macro Lett. 2012, 1, 465.
- 12 W. Lu, J. Kuwabara, T. Iijima, H. Higashimura, H. Hayashi, T. Kanbara, Macromolecules 2012, 45, 4128.
- 13 A. Najari, P. Berrouard, C. Ottone, M. Boivin, Y. Zou, D. Gendron, W. O. Caron, P. Legros, C. N. Allen, S. Sadki, M. Leclerc, Macromolecules 2012, 45, 1833.
- 14 a) M. Horie, J. Kettle, C. Y. Yu, L. A. Majewski, S. W. Chang, J. Kirkpatrick, S. M. Tuladhar, J. Nelson, B. R. Saunders, M. L. Turner, J. Mater. Chem. 2012, 22, 381; b) J. Kettle, M. Horie, L. A. Majewski, B. R. Saunders, S. Tuladhar, J. Nelson, M. L. Turner, Sol. Energy Mater. Sol. Cells 2011, 95, 2186; c) M. Horie, L. A. Majewski, M. J. Fearn, C. Y. Yu, Y. Luo, A. M. Song, B. R. Saunders, M. L. Turner, J. Mater. Chem. 2010, 20, 4347; d) J. Kettle, H. Waters, S.-W. Chang, M. Horie, J. Phys. D: Appl. Phys. 2012, 45, 125102.