Exploration of the Direct Arylation Polymerization Method for the Practical Application of Conjugated Materials: Synthetic Scale-Up, Solar Cell Performance, and Cost Analyses
Corresponding Author
Ted M. Pappenfus
Division of Science and Mathematics, University of Minnesota, Morris, MN, 56267 USA
E-mail: [email protected]Search for more papers by this authorFurqan Almyahi
Department of Physics, College of Science, University of Basrah, Basra, 61004 Iraq
Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308 Australia
Search for more papers by this authorNathan A. Cooling
Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308 Australia
Search for more papers by this authorEvan W. Culver
Department of Chemistry and Biochemistry, North Dakota State University, NDSU Dept. 2735, P.O. Box 6050, Fargo, ND, 58108-6050 USA
Search for more papers by this authorSeth C. Rasmussen
Department of Chemistry and Biochemistry, North Dakota State University, NDSU Dept. 2735, P.O. Box 6050, Fargo, ND, 58108-6050 USA
Search for more papers by this authorPaul C. Dastoor
Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308 Australia
Search for more papers by this authorCorresponding Author
Ted M. Pappenfus
Division of Science and Mathematics, University of Minnesota, Morris, MN, 56267 USA
E-mail: [email protected]Search for more papers by this authorFurqan Almyahi
Department of Physics, College of Science, University of Basrah, Basra, 61004 Iraq
Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308 Australia
Search for more papers by this authorNathan A. Cooling
Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308 Australia
Search for more papers by this authorEvan W. Culver
Department of Chemistry and Biochemistry, North Dakota State University, NDSU Dept. 2735, P.O. Box 6050, Fargo, ND, 58108-6050 USA
Search for more papers by this authorSeth C. Rasmussen
Department of Chemistry and Biochemistry, North Dakota State University, NDSU Dept. 2735, P.O. Box 6050, Fargo, ND, 58108-6050 USA
Search for more papers by this authorPaul C. Dastoor
Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308 Australia
Search for more papers by this authorAbstract
This study reports the scalability of direct arylation polymerization (DArP) batch reactions for the preparation of poly(3-hexylthiophene) (P3HT) using the Herrmann–Beller catalyst combined with a tertiary phosphine in the green solvent 2-methyltetrahydrofuran on scales ranging from 0.5 to 10 g. The physical properties of these DArP polymers are compared to those resulting from P3HT prepared via Grignard metathesis (GRIM) on a 130 g scale. Both DArP and GRIM methods are found to produce highly regioregular polymers with no evidence of β-defects and the polymers are found to exhibit comparable device performance as donor materials in bulk heterojunction organic solar cells. Purification studies coupled with device measurements highlight the necessity to carefully address the presence of impurities in materials produced from large-scale DArP batch reactions. Economic analyses reveal that the cost involved in the preparation of P3HT via DArP or GRIM procedures are comparable per gram of product and show that the most expensive component is unique for each method.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
macp201800272-sup0001-SuppMat.pdf1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. C. Rasmussen, Substantia 2017, 1, 99.
- 2S. C. Rasmussen in Conductive Polymers: Electrical Interactions in Cell Biology and Medicine (Eds: Z. Zhang, M. Rouabhia, S. Moulton), CRC Press, Boca Raton, FL, 2017, Ch. 1.
- 3S. C. Rasmussen in 100 + Years of Plastics. Leo Baekeland and Beyond (Eds: E. T. Strom, S. C. Rasmussen), American Chemical Society, Washington, DC 2011, pp. 147–163.
- 4S. C. Rasmussen, Bull. Hist. Chem. 2014, 39, 64.
- 5S. C. Rasmussen, Bull. Hist. Chem. 2015, 40, 45.
- 6O. Ostroverkhova, Chem. Rev. 2016, 116, 13279.
- 7S. Li, L. Ye, W. Zhao, H. Yan, B. Yang, D. Liu, W. Li, H. Ade, J. Hou, J. Am. Chem. Soc. 2018, 140, 7159.
- 8P. Espinet, A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 43, 4704.
- 9N. A. Cooling, E. F. Barnes, F. Almyahi, K. Feron, M. F. Al-Mudhaffer, A. Al-Ahmad, B. Vaughan, T. R. Andersen, M. J. Griffith, A. S. Hart, A. G. Lyons, W. J. Belcher, P. C. Dastoor, J. Mater. Chem. A 2016, 4, 10274.
- 10S. Yu, F. Liu, J. Yu, S. Zhang, C. Cabanetos, Y. Gao, W. Huang, J. Mater. Chem. C 2017, 5, 29.
- 11T. Bura, S. Beaupré, M.-A. Légaré, J. Quinn, E. Rochette, J. T. Blaskovits, F.-G. Fontaine, A. Pron, Y. Li, M. Leclerc, Chem. Sci. 2017, 8, 3913.
- 12J.-R. Pouliot, F. Grenier, J. T. Blaskovits, S. Beaupre, M. Leclerc, Chem. Rev. 2016, 116, 14225.
- 13T. Bura, J. T. Blaskovits, M. Leclerc, J. Am. Chem. Soc. 2016, 138, 10056.
- 14P.-O. Morin, T. Bura, M. Leclerc, Mater. Horiz. 2016, 3, 11.
- 15S.-L. Suraru, J. A. Lee, C. K. Luscombe, ACS Macro Letters. 2016, 5, 724.
- 16L. G. Mercier, M. Leclerc, Acc. Chem. Res. 2013, 46, 1597.
- 17R. Po, G. Bianchi, C. Carbonera, A. Pellegrino, Macromolecules 2015, 48, 453.
- 18G. Marzano, C. V. Ciasca, F. Babudri, G. Bianchi, A. Pellegrino, R. Po, G. M. Farinola, Eur. J. Org. Chem. 2014, 2014, 6583.
- 19G. Pirotte, S. Agarkar, B. Xu, J. Zhang, L. Lutsen, D. Vanderzande, H. Yan, P. Pollet, J. R. Reynolds, W. Maes, S. R. Marder, J. Mater. Chem. A 2017, 5, 18166.
- 20F. Grenier, B. R. Aich, Y.-Y. Lai, M. Guérette, A. B. Holmes, Y. Tao, W. W. H. Wong, M. Leclerc, Chem. Mater. 2015, 27, 2137.
- 21N. S. Gobalasingham, J. E. Carlé, F. C. Krebs, B. C. Thompson, E. Bungaard, M. Helgesen, Macromol. Rapid Commun. 2017, 38, 1700526.
- 22M. J. Griffith, N. A. Cooling, B. Vaughan, D. C. Elkington, A. S. Hart, A. G. Lyons, S. Quereshi, W. J. Belcher, P. C. Dastoor, IEEE J. Sel. Top. Quantum Electron. 2016, 22, 112.
- 23Q. Wang, R. Takita, Y. Kikuzaki, F. Ozawa, J. Am. Chem. Soc. 2010, 132, 11420.
- 24Q. Wang, M. Wakioka, F. Ozawa, Macromol. Rapid Commun. 2012, 33, 1203.
- 25A. E. Rudenko, B. C. Thompson, Macromolecules 2015, 48, 569.
- 26J.-R. Pouliot, M. Wakioka, F. Ozawa, Y. Li, M. Leclerc, Macromol. Chem. Phys. 2016, 217, 1493.
- 27J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, C. L. Wilkins. J. Org. Chem. 1995, 60, 532.
- 28F. C. Krebs, Y. Thomann, R. Thomann, J. W. Andreasen. Nanotechnology 2008, 19, 424013.
- 29C. J. Mulligan, M. Wilson, G. Bryant, B. Vaughan, X. Zhou, W. J. Belcher, P. C. Dastoor. Sol. Energy Mater. Sol. Cells 2014, 120, 9.
- 30C. J. Mulligan, C. Bilen, X. Zhou, W. J. Belcher, P. C. Dastoor. Sol. Energy Mater. Sol. Cells 2015, 133, 26.
- 31N. A. Cooling, E. F. Barnes, F. Almyahi, K. Feron, M. F. Al-Mudhaffer, A. Al-Ahmad, B. Vaughan, T. R. Andersen, M. J. Griffith, A. S. Hart, A. G. Lyons, W. J. Belcher, P. C. Dastoor. J. Mater. Chem. A 2016, 4, 10274.
- 32T. M. Pappenfus, D. L. Hermanson, S. G. Kohl, J. H. Melby, L. M. Thoma, N. E. Carpenter, D. A. da Silva Filho, J.-L. Bredas, J. Chem. Educ. 2010, 87, 522.
- 33R. D. McCullough, R. D. Lowe, M. Jayaraman, D. L. Anderson, J.Org. Chem. 1993, 58, 904.
- 34T.-A. Chen, X. Wu, R. D. Rieke, J. Am. Chem. Soc. 1995, 117, 233.
- 35S. C. Rasmussen, B. D. Straw, J. E. Hutchison in Semiconducting Polymers: Applications, Synthesis, and Properties (Eds: B. R. Hsieh, W. Wei, M. Galvin) American Chemical Society: Washington, D.C., 1999, Ch. 21.
- 36R. S. Loewe, S. M. Khersonsky, R. D. McCullough, Adv. Mater. 1999, 11, 250.
- 37R. S. Loewe, P. C. Ewbank, J. Liu, L. Zhai, R. D. McCullough, Macromolecules 2001, 34, 4324.
- 38R. D. McCullough, M. C. Iovu, U.S. Patent Appl. 20080132670A1, 2008.
- 39A. S. Dudnik, T. J. Aldrich, N. D. Eastham, R. P. H. Chang, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2016, 138, 15699.
- 40T. Bura, P. O. Morin, M. Leclerc, Macromolecules 2015, 48, 5614.
- 41V. Cirpus, J. Wittrock, A. Adam, Z. Anorg. Allg. Chem. 2001, 627, 533.
- 42M. Wakioka, Y. Kitano, F. Ozawa, Macromolecules 2013, 46, 370.
- 43C. L. Cicha, S. N. Gockel, A. J. Helmin, W. D. Wilcox, D. E. Janzen, T. M. Pappenfus, Polym. Bull. 2018, https://doi.org/10.1007/s00289-018-2346-6.
- 44Z. Ma, E. Wang, M. E. Jarvid, P. Henriksson, O. Inganas, F. Zhang, M. R. Andersson, J. Mater. Chem. 2012, 22, 2306.
- 45Z. Li, X. Xu, W. Zhang, X. Meng, W. Ma, A. Yartsev, O. Inganas, M. R. Andersson, R. A. J. Janssen, E. Wang, J. Am. Chem. Soc. 2016, 138, 10935.
- 46T. P. Osedach, T. L. Andrew, V. Bulovic, Energy Environ. Sci. 2013, 6, 711.
- 47M. Wakioka, F. Ozawa, Asian J. Org. Chem. 2018, 7, 1206.