Photoresponsive Coumarin-Based Supramolecular Hydrogel for Controllable Dye Release
Wei Ji
School of Materials Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
Search for more papers by this authorMinggao Qin
School of Materials Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Chuanliang Feng
School of Materials Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
E-mail: [email protected]Search for more papers by this authorWei Ji
School of Materials Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
Search for more papers by this authorMinggao Qin
School of Materials Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Chuanliang Feng
School of Materials Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
E-mail: [email protected]Search for more papers by this authorAbstract
Recently, photoresponsive hydrogels have attracted increasing interest due to their ability to provide precise spatial and temporal control of drug release. Herein, a new kind of coumarin-based photoresponsive supramolecular hydrogelator without conventional gelation motif is designed and synthesized through a facile one-pot method. The gelation process, photoresponsiveness, self-assembly morphology, self-assembly mechanism, and release kinetics are fully investigated by various characterization methods (e.g., scanning electron microscopy, single crystal X-ray diffraction, high pressure liquid chromatography, UV–vis spectroscopy). Furthermore, encapsulated methyl violet dye molecules can be precisely released from the hydrogel by manipulating photoirradiation time. The study reveals that the coumarin-based photoresponsive hydrogel holds great potential as soft materials for controllable drug release.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
macp201700398-sup-0001-S1.pdf917 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) X. W. Du, J. Zhou, J. F. Shi, B. Xu, Chem. Rev. 2015, 115, 13165; b) X. M. Li, J. Y. Li, Y. A. Gao, Y. Kuang, J. F. Shi, B. Xu, J. Am. Chem. Soc. 2010, 132, 17707.
- 2A. Baral, S. Roy, A. Dehsorkhi, I. W. Hamley, S. Mohapatra, S. Ghosh, A. Banerjee, Langmuir 2014, 30, 929.
- 3H. Komatsu, S. Matsumoto, S.-I. Tamaru, K. Kaneko, M. Ikeda, I. Hamachi, J. Am. Chem. Soc. 2009, 131, 5580.
- 4M. C. Branco, D. J. Pochan, N. J. Wagner, J. P. Schneider, Biomaterials 2009, 30, 1339.
- 5E. K. Johnson, D. J. Adams, P. J. Cameron, J. Mater. Chem. 2011, 21, 2024.
- 6S. Fleming, R. V. Ulijn, Chem. Soc. Rev. 2014, 43, 8150.
- 7F. Gelain, L. D. Unsworth, S. Zhang, J. Controlled Release 2010, 145, 231.
- 8a) M. B. Fish, C. A. Fromen, G. Lopez-Cazares, A. W. Glinski, O. Eniola-Adefesol, Biomaterials 2017, 124, 169; b) F. Wang, W. Ji, J. Y. Liu, J. Y. He, C. L. Feng, Macromol. Chem. Phys. 2017, 218, 1600560.
- 9L. E. Bromberg, E. S. Ron, Adv. Drug Delivery Rev. 1998, 31, 197.
- 10F. J. Xu, E. T. Kang, K. G. Neoh, Biomaterials 2006, 27, 2787.
- 11K. Peng, I. Tomatsu, A. Kros, Chem. Commun. 2010, 46, 4094.
- 12K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, S. Shinkai, J. Am. Chem. Soc. 1994, 116, 6664.
- 13a) S. Ray, A. K. Das, A. Banerjee, Chem. Mater. 2007, 19, 1633; b) F. Rodríguez-Llansola, B. Escuder, J. F. Miravet, D. Hermida-Merino, I. W. Hamley, C. J. Cardin, W. Hayes, Chem. Commun. 2010, 46, 7960.
- 14a) Y. J. Pan, Y. Y. Chen, D. R. Wang, C. Wei, J. Guo, D. R. Lu, C. C. Chu, C. C. Wang, Biomaterials 2012, 33, 6570; b) S. Y. Qin, X. J. Liu, R. X. Zhuo, X. Z. Zhang, Macromol. Chem. Phys. 2012, 213, 2044; c) P. Y. Wang, Y. Y. Zhang, L. Cheng, W. G. Liu, Macromol. Chem. Phys. 2015, 216, 164.
- 15I. Tomatsu, A. Hashidzume, A. Harada, Macromol. Rapid Commun. 2006, 27, 238.
- 16a) Z. Cheng, S. Liu, P. W. Beines, N. Ding, P. Jakubowicz, W. Knoll, Chem. Mater. 2008, 20, 7215; b) X. Q. Dou, P. Li, S. Y. Jiang, H. Bayat, H. Schönherr, ACS Appl. Mater. Interfaces 2017, 9, 8508.
- 17W. Ji, G. F. Liu, M. X. Xu, C. L. Feng, Macromol. Chem. Phys. 2015, 216, 1945.
- 18L. Yao, S. Krause, Macromolecules 2003, 36, 2055.
- 19K. Lalitha, Y. S. Prasad, C. U. Maheswari, V. Sridharan, G. John, S. Nagarajan, J. Mater. Chem. B 2015, 3, 5560.
10.1039/C5TB00864F Google Scholar
- 20a) R. Cheng, F. H. Meng, C. Deng, H. A. Klok, Z. Y. Zhong, Biomaterials 2013, 34, 3647; b) R. Cheng, F. Feng, F. H. Meng, C. Deng, J. Feijen, Z. Y. Zhong, J. Controlled Release 2011, 152, 2.
- 21X. Zhang, C. Dong, W. Huang, H. Wang, L. Wang, D. Ding, H. Zhou, J. Long, T. Wang, Z. Yang, Nanoscale 2015, 7, 16666.
- 22W. Ji, G. F. Liu, F. Wang, Z. Zhu, C. L. Feng, Chem. Commun. 2016, 52, 12574.
- 23Q. N. Lin, Q. Huang, C. Y. Li, C. Y. Bao, Z. Z. Liu, F. Y. Li, L. Y. Zhu, J. Am. Chem. Soc. 2010, 132, 10645.
- 24Z. Z. Liu, Q. N. Lin, Y. Sun, T. Liu, C. Y. Bao, F. Y. Li, L. Y. Zhu, Adv. Mater. 2014, 26, 3912.
- 25J. H. Kim, M. Seo, Y. J. Kim, S. Y. Kim, Langmuir 2009, 25, 1761.
- 26Y. L. Zhao, J. F. Stoddart, Langmuir 2009, 25, 8442.
- 27Y. P. Wu, S. Wu, X. J. Tian, X. Wang, W. X. Wu, G. Zou, Q. J. Zhang, Soft Matter 2011, 7, 716.
- 28Z. J. Qiu, H. T. Yu, J. B. Li, Y. Wang, Y. Zhang, Chem. Commun. 2009, 3342.
- 29J. E. Stumpel, B. Ziółkowski, L. Florea, D. Diamond, D. J. Broer, A. P. H. J. Schenning, ACS Appl. Mater. Interfaces 2014, 6, 7268.
- 30C. Chen, G. Liu, X. Liu, S. Pang, C. Zhu, L. Lv, J. Ji, Polym. Chem. 2011, 2, 1389.
- 31a) Q. W. Zhang, D. H. Qu, J. C. Wu, X. Ma, Q. C. Wang, H. Tian, Langmuir 2013, 29, 5345; b) Q. W. Zhang, D. H. Qu, X. Ma, H. Tian, Chem. Commun. 2013, 49, 9800.
- 32W. Ji, N. Li, D. Chen, X. Qi, W. Sha, Y. Jiao, Q. Xu, J. Lu, J. Mater. Chem. B 2013, 1, 5942.
- 33I. Tomatsu, K. Peng, A. Kros, Adv. Drug Delivery Rev. 2011, 63, 1257.
- 34Y. Luo, M. S. Shoichet, Nat. Mater. 2004, 3, 249.
- 35P. Terech, R. G. Weiss, Chem. Rev. 1997, 97, 3133.
- 36L. A. Estroff, A. D. Hamilton, Chem. Rev. 2004, 104, 1201.
- 37D. K. Smith, Chem. Soc. Rev. 2009, 38, 684.
- 38Z. B. Zhang, Y. Luo, J. Z. Chen, S. Y. Dong, Y. H. Yu, Z. Ma, F. H. Huang, Angew. Chem., Int. Ed. 2011, 50, 1397.
- 39S. Y. Dong, B. Zheng, D. H. Xu, X. Z. Yan, M. M. Zhang, F. H. Huang, Adv. Mater. 2012, 24, 3191.
- 40Q. N. Lin, C. Y. Bao, S. Y. Cheng, Y. L. Yang, W. Ji, L. Y. Zhu, J. Am. Chem. Soc. 2012, 134, 5052.
- 41T. Yoshii, M. Ikeda, I. Hamachi, Angew. Chem., Int. Ed. 2014, 53, 7264.
- 42W. Ji, G. F. Liu, M. X. Xu, X. Q. Dou, C. L. Feng, Chem. Commun. 2014, 50, 15545.
- 43W. Ji, G. F. Liu, Z. J. Li, C. L. Feng, ACS Appl. Mater. Interfaces 2016, 8, 5188.
- 44E. R. Draper, T. O. McDonald, D. J. Adams, Chem. Commun. 2015, 51, 12827.
- 45H. T. Yu, H. Mizufune, K. Uenaka, T. Moritoki, H. Koshima, Tetrahedron 2005, 61, 8932.
- 46K. Ghosh, S. Panja, RSC Adv. 2015, 5, 12094.
- 47K. Lalitha, S. Nagarajan, J. Mater. Chem. B 2015, 3, 5690.
- 48a) Z. X. Guo, R. Y. Gong, Y. Jiang, X. B. Wan, Soft Matter 2015, 11, 6118; b) K. Lalitha, P. Jenifer, Y. S. Prasad, K. Muthusamy, G. John, S. Nagarajan, RSC Adv. 2014, 4, 48433; c) D. Yakeya, N. Kitou, S. Kinugawa, T. Moriguchi, A. Tsuge, Tetrahedron 2017, 73, 3973; d) G. Y. Yeap, E. Hrishikesan, Y. H. Chan, W. A. K. Mahmood, J. Fluoresc. 2017, 27, 105; e) A. J. Moro, B. Rome, E. Aguiló, J. Arcau, R. Puttreddy, K. Rissanen, J. C. Lima, L. Rodríguez, Org. Biomol. Chem. 2015, 13, 2026.
- 49B. K. An, D. S. Lee, J. S. Lee, Y. S. Park, H. S. Song, S. Y. Park, J. Am. Chem. Soc. 2004, 126, 10232.
- 50Y. Feng, Z. T. Liu, J. Liu, Y. M. He, Q. Y. Zheng, Q. H. Fan, J. Am. Chem. Soc. 2009, 131, 7950.
- 51R. Schmidt, D. Geissler, V. Hagen, J. Bendig, J. Phys. Chem. A 2007, 111, 5768.
- 52D. J. Adams, Macromol. Biosci. 2011, 11, 160.
- 53K. Katayama, S. Tsukiji, T. Furuta, T. Nagamune, Chem. Commun. 2008, 42, 5399.
- 54 CCDC 1514752 (DBC) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 55B. Maheswari, P. Jagadeesh Babu, M. Agarwal, J. Biomater. Sci., Polym. Ed. 2014, 25, 269.