Mechanomorphological Guidance of Colloidal Gel Regulates Cell Morphogenesis
Meng Hsuan Lin
Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 USA
Contribution: Conceptualization (equal), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorIsabelle Linares
Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 USA
Contribution: Conceptualization (supporting), Investigation (supporting), Methodology (supporting)
Search for more papers by this authorCesar Ramirez
Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 USA
Contribution: Data curation (supporting), Formal analysis (supporting), Investigation (supporting)
Search for more papers by this authorYanni Correa Ramirez
Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 USA
Contribution: Data curation (supporting), Methodology (supporting)
Search for more papers by this authorCorresponding Author
Debanjan Sarkar
Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 USA
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 USA
E-mail: [email protected]
Contribution: Data curation (lead), Formal analysis (lead), Funding acquisition (lead), Methodology (supporting), Project administration (lead), Writing - original draft (supporting), Writing - review & editing (lead)
Search for more papers by this authorMeng Hsuan Lin
Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 USA
Contribution: Conceptualization (equal), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorIsabelle Linares
Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 USA
Contribution: Conceptualization (supporting), Investigation (supporting), Methodology (supporting)
Search for more papers by this authorCesar Ramirez
Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 USA
Contribution: Data curation (supporting), Formal analysis (supporting), Investigation (supporting)
Search for more papers by this authorYanni Correa Ramirez
Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 USA
Contribution: Data curation (supporting), Methodology (supporting)
Search for more papers by this authorCorresponding Author
Debanjan Sarkar
Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 USA
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 USA
E-mail: [email protected]
Contribution: Data curation (lead), Formal analysis (lead), Funding acquisition (lead), Methodology (supporting), Project administration (lead), Writing - original draft (supporting), Writing - review & editing (lead)
Search for more papers by this authorAbstract
Microstructural morphology of the extracellular matrix guides the organization of cells in 3D. However, current biomaterials-based matrices cannot provide distinct spatial cues through their microstructural morphology due to design constraints. To address this, colloidal gels are developed as 3D matrices with distinct microstructure by aggregating ionic polyurethane colloids via electrostatic screening. Due to the defined orientation of interconnected particles, positively charged colloids form extended strands resulting in a dense microstructure whereas negatively charged colloids form compact aggregates with localized large voids. Chondrogenesis of human mesenchymal stem cells (MSCs) and endothelial morphogenesis of human endothelial cells (ECs) are examined in these colloidal gels. MSCs show enhanced chondrogenic response in dense colloidal gel due to their spatial organization achieved by balancing the cell–cell and cell–matrix interactions compared to porous gels where cells are mainly clustered. ECs tend to form relatively elongated cellular networks in dense colloidal gel compared to porous gels. Additionally, the role of matrix stiffness and viscoelasticity in the morphogenesis of MSCs and ECs are analyzed with respect to microstructural morphology. Overall, these results demonstrate that colloidal gels can provide spatial cues through their microstructural morphology and in correlation with matrix mechanics for cell morphogenesis.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding authors upon reasonable request.
Supporting Information
Filename | Description |
---|---|
mabi202300122-sup-0001-SuppMat.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Kopeček, Biomaterials 2007, 28, 5185.
- 2K. Y. Lee, D. J. Mooney, Chem. Rev. 2001, 101, 1869.
- 3J. A. Burdick, W. L. Murphy, Nat. Commun. 2012, 3, 1269.
- 4N. A. Peppas, J. Z. Hilt, A. Khademhosseini, R. Langer, Adv. Mater. 2006, 18, 1345.
- 5K. J. De France, F. Xu, T. Hoare, Adv. Healthcare Mater. 2018, 7, 1700927.
- 6K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A. L. Willis, R. M. Hoffman, C. G. Figdor, S. J. Weiss, P. Friedl, J. Cell Biol. 2013, 201, 1069.
- 7Y.-C. Chen, R.-Z. Lin, H. Qi, Y. Yang, H. Bae, J. M. Melero-Martin, A. Khademhosseini, Adv. Funct. Mater. 2012, 22, 2027.
- 8A. P. Golden, J. Tien, Lab Chip 2007, 7, 720.
- 9M. P. Lutolf, F. E. Weber, H. G. Schmoekel, J. C. Schense, T. Kohler, R. Müller, J. A. Hubbell, Nat. Biotechnol. 2003, 21, 513.
- 10N. Annabi, J. W. Nichol, X. Zhong, C. Ji, S. Koshy, A. Khademhosseini, F. Dehghani, Tissue Eng., Part B 2010, 16, 371.
- 11N. Huebsch, E. Lippens, K. Lee, M. Mehta, S. T. Koshy, M. C. Darnell, R. M. Desai, C. M. Madl, M. Xu, X. Zhao, O. Chaudhuri, C. Verbeke, W. S. Kim, K. Alim, A. Mammoto, D. E. Ingber, G. N. Duda, D. J. Mooney, Nat. Mater. 2015, 14, 1269.
- 12G. S. Hussey, J. L. Dziki, S. F. Badylak, Nat. Rev. Mater. 2018, 3, 159.
- 13C. Casale, G. Imparato, C. Mazio, P. A. Netti, F. Urciuolo, Acta Biomater. 2021, 131, 341.
- 14N. M. Rodriguez, R. A. Desai, B. Trappmann, B. M. Baker, C. S. Chen, Langmuir 2014, 30, 1327.
- 15S. K. Nair, S. Basu, B. Sen, M.-H. Lin, A. N. Kumar, Y. Yuan, P. J. Cullen, D. Sarkar, Sci. Rep. 2019, 9, 1072.
- 16Y. Yuan, S. Basu, M. H. Lin, S. Shukla, D. Sarkar, ACS Appl. Mater. Interfaces 2019, 11, 31709.
- 17S. Lazzari, L. Nicoud, B. Jaquet, M. Lattuada, M. Morbidelli, Adv. Colloid Interface Sci. 2016, 235, 1.
- 18P. J. Lu, D. A. Weitz, Annu. Rev. Condens. Matter Phys. 2013, 4, 217.
- 19M. Y. Lin, H. M. Lindsay, D. A. Weitz, R. Klein, R. C. Ball, P. Meakin, J. Phys.: Condens. Matter 1990, 2, 3093.
- 20M. Y. Lin, H. M. Lindsay, D. A. Weitz, R. C. Ball, R. Klein, P. Meakin, Phys. Rev. A 1990, 41, 2005.
- 21E. H. A. De Hoog, W. K. Kegel, A. Van Blaaderen, H. N. W. Lekkerkerker, Phys. Rev. E 2001, 64, 021407.
- 22A. D. Dinsmore, V. Prasad, I. Y. Wong, D. A. Weitz, Phys. Rev. Lett. 2006, 96, 185502.
- 23S. W. Kamp, M. L. Kilfoil, Soft Matter 2009, 5, 2438.
- 24P.-K. Kao, M. J. Solomon, M. Ganesan, Soft Matter 2022, 18, 1350.
- 25D. A. Weitz, M. Y. Lin, Phys. Rev. Lett. 1986, 57, 2037.
- 26T. H. Qazi, V. G. Muir, J. A. Burdick, ACS Biomater. Sci. Eng. 2022, 8, 1427.
- 27N. F. Truong, E. Kurt, N. Tahmizyan, S. C. Lesher-Pérez, M. Chen, N. J. Darling, W. Xi, T. Segura, Acta Biomater. 2019, 94, 160.
- 28A. C. Daly, L. Riley, T. Segura, J. A. Burdick, Nat. Rev. Mater. 2020, 5, 20.
- 29R.-S. Hsu, P.-Y. Chen, J.-H. Fang, Y.-Y. Chen, C.-W. Chang, Y.-J. Lu, S.-H. Hu, Adv. Sci. 2019, 6, 1900520.
- 30K. M. Yamada, E. Cukierman, Cell 2007, 130, 601.
- 31B. A. Nerger, C. M. Nelson, Biomaterials 2019, 198, 135.
- 32M. A. Kinney, T. A. Hookway, Y. Wang, T. C. Mcdevitt, Ann. Biomed. Eng. 2014, 42, 352.
- 33E. Karzbrun, A. H. Khankhel, H. C. Megale, S. M. K. Glasauer, Y. Wyle, G. Britton, A. Warmflash, K. S. Kosik, E. D. Siggia, B. I. Shraiman, S. J. Streichan, Nature 2021, 599, 268.
- 34P. Rompolas, K. R. Mesa, V. Greco, Nature 2013, 502, 513.
- 35D. Dieterich, W. Keberle, H. Witt, Angew. Chem., Int. Ed. Engl. 1970, 9, 40.
- 36B. K. Kim, Colloid Polym. Sci. 1996, 274, 599.
- 37T. Oncsik, G. Trefalt, M. Borkovec, I. Szilagyi, Langmuir 2015, 31, 3799.
- 38C. Calero, J. Faraudo, D. Bastos-González, J. Am. Chem. Soc. 2011, 133, 15025.
- 39F. J. Montes Ruiz-Cabello, G. Trefalt, T. Oncsik, I. Szilagyi, P. Maroni, M. Borkovec, J. Phys. Chem. B 2015, 119, 8184.
- 40M. Manciu, E. Ruckenstein, Langmuir 2001, 17, 7061.
- 41J. A. Long, D. W. J. Osmond, B. Vincent, J. Colloid Interface Sci. 1973, 42, 545.
- 42M. J. Hill, D. Sarkar, Langmuir 2017, 33, 6167.
- 43M. Y. Lin, H. M. Lindsay, D. A. Weitz, R. C. Ball, R. Klein, P. Meakin, Nature 1989, 339, 360.
- 44D. A. Weitz, M. Oliveria, Phys. Rev. Lett. 1984, 52, 1433.
- 45W.-H. Shih, J. Liu, W. Y. Shih, S. I. Kim, M. Sarikaya, I. A. Aksay, MRS Proc. 1989, 155, 83.
- 46H. Wu, M. Morbidelli, Langmuir 2001, 17, 1030.
- 47W.-H. Shih, W. Y. Shih, S.-I. Kim, J. Liu, I. A. Aksay, Phys. Rev. A 1990, 42, 4772.
- 48A. H. Krall, D. A. Weitz, Phys. Rev. Lett. 1998, 80, 778.
- 49T. Liberto, M. Le Merrer, C. Barentin, M. Bellotto, J. Colombani, Soft Matter 2017, 13, 2014.
- 50I. Casanellas, A. Lagunas, Y. Vida, E. Pérez-Inestrosa, J. A. Andrades, J. Becerra, J. Samitier, Int. J. Mol. Sci. 2020, 21, 5269.
- 51S. M. Smith, C. Shu, J. Melrose, Histochem. Cell Biol. 2010, 134, 251.
- 52H. J. Lee, B. H. Choi, B.-H. Min, S. R. Park, Arthritis Rheum. 2009, 60, 2325.
- 53J.-L. Wang, K.-F. Ren, H. Chang, F. Jia, B.-C. Li, Y. Ji, J. Ji, Macromol. Biosci. 2013, 13, 483.
- 54K. Katoh, Vasc. Health Risk Manage. 2008, 4, 1273.
- 55M. Carpineti, M. Giglio, Phys. Rev. Lett. 1992, 68, 3327.
- 56J. Bibette, T. G. Mason, Hu Gang, D. A. Weitz, Phys. Rev. Lett. 1992, 69, 981.
- 57D. Sarkar, J.-C. Yang, A. S. Gupta, S. T. Lopina, J. Biomed. Mater. Res., Part A 2009, 90A, 263.
- 58D. Sarkar, S. T. Lopina, Polym. Degrad. Stab. 2007, 92, 1994.
- 59P. Bertsch, L. Andrée, N. H. Besheli, S. C. G. Leeuwenburgh, Acta Biomater. 2022, 138, 124.
- 60J. Sprakel, S. B. Lindström, T. E. Kodger, D. A. Weitz, Phys. Rev. Lett. 2011, 106, 248303.
- 61H. Wang, Q. Zou, O. C. Boerman, A. W. G. Nijhuis, J. A. Jansen, Y. Li, S. C. G. Leeuwenburgh, J. Controlled Release 2013, 166, 172.
- 62H. Wang, O. C. Boerman, K. Sariibrahimoglu, Y. Li, J. A. Jansen, S. C. G. Leeuwenburgh, Biomaterials 2012, 33, 8695.
- 63B. E. Bobick, F. H. Chen, A. M. Le, R. S. Tuan, Birth Defects Res., Part C 2009, 87, 351.
- 64P. Singh, J. E. Schwarzbauer, J. Cell Sci. 2014, 127, 4420.
- 65A. Woods, G. Wang, F. Beier, J. Cell. Physiol. 2007, 213, 1.
- 66B. Sridharan, S. M. Lin, A. T. Hwu, A. D. Laflin, M. S. Detamore, PLoS One 2016, 10, e0141479.
- 67C. N. Salinas, K. S. Anseth, Biomaterials 2008, 29, 2370.
- 68I. L. Kim, S. Khetan, B. M. Baker, C. S. Chen, J. A. Burdick, Biomaterials 2013, 34, 5571.
- 69H. Park, D. Kim, K. Y. Lee, J. Biomed. Mater. Res., Part A 2017, 105, 42.
- 70J. S. Park, J. S. Chu, A. D. Tsou, R. Diop, Z. Tang, A. Wang, S. Li, Biomaterials 2011, 32, 3921.
- 71Y. Zhou, J. Qiu, L. Wan, J. Li, J. Mol. Histol. 2022, 53, 805.
- 72G. D. Nicodemus, S. C. Skaalure, S. J. Bryant, Acta Biomater. 2011, 7, 492.
- 73O. Chaudhuri, J. Cooper-White, P. A. Janmey, D. J. Mooney, V. B. Shenoy, Nature 2020, 584, 535.
- 74O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S. A. Bencherif, J. C. Weaver, N. Huebsch, H.-P. Lee, E. Lippens, G. N. Duda, D. J. Mooney, Nat. Mater. 2016, 15, 326.
- 75H.-P. Lee, L. Gu, D. J. Mooney, M. E. Levenston, O. Chaudhuri, Nat. Mater. 2017, 16, 1243.
- 76H.-P. Lee, R. Stowers, O. Chaudhuri, Nat. Commun. 2019, 10, 529.
- 77L. Wu, A. Magaz, T. Wang, C. Liu, A. Darbyshire, M. Loizidou, M. Emberton, M. Birchall, W. Song, Biomaterials 2018, 186, 64.
- 78S. A. Maskarinec, C. Franck, D. A. Tirrell, G. Ravichandran, Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 22108.
- 79K. Chwalek, K. R. Levental, M. V. Tsurkan, A. Zieris, U. Freudenberg, C. Werner, Biomaterials 2011, 32, 9649.
- 80Tissue Eng., Part A 2009, 15, 579.
- 81K. Chwalek, M. V. Tsurkan, U. Freudenberg, C. Werner, Sci. Rep. 2014, 4, 4414.
- 82J. P. Califano, C. A. Reinhart-King, Cell Mol. Bioeng. 2008, 1, 122.
- 83J. C. Kohn, D. W. Zhou, F. Bordeleau, A. L. Zhou, B. N. Mason, M. J. Mitchell, M. R. King, C. A. Reinhart-King, Biophys. J. 2015, 108, 471.
- 84V. Moreau, F. Tatin, C. Varon, E. Génot, Mol. Cell. Biol. 2003, 23, 6809.