A 3D Bioprinted Nanoengineered Hydrogel with Photoactivated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation
Sayan Deb Dutta
Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341 Republic of Korea
Search for more papers by this authorKeya Ganguly
Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341 Republic of Korea
Search for more papers by this authorJin Hexiu
Department of Oral and Maxillofacial Surgery, Capital Medical University, Beijing, China
Search for more papers by this authorAayushi Randhawa
Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341 Republic of Korea
Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 100069 Republic of Korea
Search for more papers by this authorCorresponding Author
Md Moniruzzaman
Department of Chemical and Biological Engineering, Gachon University, Seongnam, 1342 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ki-Taek Lim
Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341 Republic of Korea
Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 100069 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorSayan Deb Dutta
Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341 Republic of Korea
Search for more papers by this authorKeya Ganguly
Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341 Republic of Korea
Search for more papers by this authorJin Hexiu
Department of Oral and Maxillofacial Surgery, Capital Medical University, Beijing, China
Search for more papers by this authorAayushi Randhawa
Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341 Republic of Korea
Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 100069 Republic of Korea
Search for more papers by this authorCorresponding Author
Md Moniruzzaman
Department of Chemical and Biological Engineering, Gachon University, Seongnam, 1342 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ki-Taek Lim
Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341 Republic of Korea
Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 100069 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi-functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL−1) and gelatin methacryloyl (GelMA, 12 wt%) is reported for robust angiogenesis, bone regeneration and anti-tumor therapy. The CQDs are synthesized from a plant-inspired bioactive molecule, 1, 3, 5-trihydroxybenzene. The 3D printed GelMA-CQDs hydrogels display typical shear-thinning behavior with excellent printability. The fabricated hydrogel displayed M2 polarization of macrophage (Raw 264.7) cells via enhancing anti-inflammatory genes (e.g., IL-4 and IL10), and induced angiogenesis and osteogenesis of human bone mesenchymal stem cells (hBMSCs). The bioprinted hBMSCs are able to produce vessel-like structures after 14 d of incubation. Furthermore, the 3D printed hydrogel scaffolds also show remarkable near infra-red (NIR) responsive properties under 808 nm NIR light (1.0 W cm−2) irradiation with controlled release of antitumor drugs (≈49%) at pH 6.5, and thereby killing the osteosarcoma cells. Therefore, it is anticipated that the tissue regeneration and healing ability with therapeutic potential of the GelMA-CQDs scaffolds may provide a promising alternative for traumatic tissue regeneration via augmenting angiogenesis and accelerated immunomodulation.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
mabi202300096-sup-0001-SuppMat.pdf937.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) H. Xue, Z. Zhang, Z. Lin, J. Su, A. C. Panayi, Y. Xiong, L. Hu, Y. Hu, L. Chen, C. Yan, Bioact. Mater. 2022, 18, 552;
b) Y. Zhu, B. Kong, R. Liu, Y. Zhao, Smart Med. 2022, 1, e20220006;
c) Z. Luo, J. Che, L. Sun, L. Yang, Y. Zu, H. Wang, Y. Zhao, Eng.Regener. 2021, 2, 257.
10.1016/j.engreg.2021.10.002 Google Scholar
- 2B. N. Brown, B. D. Ratner, S. B. Goodman, S. Amar, S. F. Badylak, Biomaterials 2012, 33, 3792.
- 3a) A. R. D. Reeves, K. L. Spiller, D. O. Freytes, G. Vunjak-Novakovic, D. L. Kaplan, Biomaterials 2015, 73, 272; b) J. Ye, C. Xie, C. Wang, J. Huang, Z. Yin, B. C. Heng, X. Chen, W. Shen, Bioact. Mater. 2021, 6, 4096.
- 4A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, M. Locati, Trends Immunol. 2004, 25, 677.
- 5a) A. K. Gaharwar, I. Singh, A. Khademhosseini, Nat. Rev. Mater. 2020, 5, 686; b) Z. Tu, Y. Zhong, H. Hu, D. Shao, R. Haag, M. Schirner, J. Lee, B. Sullenger, K. W. Leong, Nat. Rev. Mater. 2022, 7, 557.
- 6a) F. Loi, L. A. Córdova, J. Pajarinen, T.-H. Lin, Z. Yao, S. B. Goodman, Bone 2016, 86, 119; b) Y. Gao, Q. Ma, Smart Med. 2022, 1, 1.
- 7Z. Fu, Y. Zhuang, J. Cui, R. Sheng, H. Tomás, J. Rodrigues, B. Zhao, X. Wang, K. Lin, Eng. Regener. 2022, 3, 163.
10.1016/j.engreg.2022.04.003 Google Scholar
- 8H. Xue, L. Hu, Y. Xiong, X. Zhu, C. Wei, F. Cao, W. Zhou, Y. Sun, Y. Endo, M. Liu, Y. Liu, J. Liu, A. Abududilibaier, L. Chen, C. Yan, B. Mi, G. Liu, Carbohydr. Polym. 2019, 226, 115302.
- 9R. C. H. Gresham, C. S. Bahney, J. K. Leach, Bioact. Mater. 2021, 6, 1945.
- 10Y. Niu, L. Wang, N. Yu, P. Xing, Z. Wang, Z. Zhong, Y. Feng, L. Dong, C. Wang, Acta Biomater. 2020, 111, 153.
- 11a) A. P. Kusumbe, S. K. Ramasamy, R. H. Adams, Nature 2014, 507, 323; b) N. Komatsu, H. Takayanagi, Nat. Rev. Rheumatol. 2022, 18, 1.
- 12a) M. Zhang, C. Qin, Y. Wang, X. Hu, J. Ma, H. Zhuang, J. Xue, L. Wan, J. Chang, W. Zou, C. Wu, Addit. Manuf. 2022, 54, 102721; b) S. K. Ghorai, A. Dutta, T. Roy, P. Guha Ray, D. Ganguly, M. Ashokkumar, S. Dhara, S. Chattopadhyay, ACS Appl. Mater. Interfaces 2022, 14, 28455.
- 13a) C. Wang, W. Huang, Y. Zhou, L. He, Z. He, Z. Chen, X. He, S. Tian, J. Liao, B. Lu, Y. Wei, M. Wang, Bioact. Mater. 2020, 5, 82; b) Y. Chen, L. Chen, Y. Wang, K. Lin, J. Liu, Composites, Part B 2022, 230, 109550.
- 14a) H. Sun, C. Zhang, B. Zhang, P. Song, X. Xu, X. Gui, X. Chen, G. Lu, X. Li, J. Liang, J. Sun, Q. Jiang, C. Zhou, Y. Fan, X. Zhou, X. Zhang, Chem. Eng. J. 2022, 427, 130961; b) M. Vallet-Regí, E. Ruiz-Hernández, Adv. Mater. 2011, 23, 5177.
- 15a) Q. Chen, X. Zhao, W. Lai, Z. Li, D. You, Z. Yu, W. Li, X. Wang, Surf. Coat. Technol. 2022, 435, 128236; b) Y. Wang, X. Yuan, J. Ye, F. He, Ceram. Int. 2022, 48, 28557; c) J. Zhang, D. Tong, H. Song, R. Ruan, Y. Sun, Y. Lin, J. Wang, L. Hou, J. Dai, J. Ding, H. Yang, Adv. Mater. 2022, 34, 2202044.
- 16S. D. Dutta, J. Hexiu, D. K. Patel, K. Ganguly, K.-T. Lim, Int. J. Biol. Macromol. 2021, 167, 644.
- 17a) S. D. Dutta, K. Ganguly, A. Randhawa, T. V. Patil, D. K. Patel, K.-T. Lim, Biomaterials 2023, 294, 121999; b) K. Ganguly, S. D. Dutta, A. Randhawa, D. K. Patel, T. V. Patil, K.-T. Lim, Adv. Healthcare Mater. 2023, 12, 1.
- 18a) Z. Zhong, X. Wu, Y. Wang, M. Li, Y. Li, X. Liu, X. Zhang, Z. Lan, J. Wang, Y. Du, S. Zhang, Bioact. Mater. 2022, 10, 195; b) A. E. Pazarçeviren, S. Akbaba, Z. Evis, A. E. Tezcaner, ACS Biomater. Sci. Eng. 2022, 8, 3038; c) M. N. Collins, G. Ren, K. Young, S. Pina, R. L. Reis, J. M. Oliveira, Adv. Funct. Mater. 2021, 31, 2010609.
- 19a) B. Geng, F. Fang, P. Li, S. Xu, D. Pan, Y. Zhang, L. Shen, Chem. Eng. J. 2021, 417, 128125; b) B. Geng, P. Li, F. Fang, W. Shi, J. Glowacki, D. Pan, L. Shen, Carbon 2021, 184, 375; c) M. Majood, P. Garg, R. Chaurasia, A. Agarwal, S. Mohanty, M. Mukherjee, ACS Omega 2022, 7, 28685. d) A. Rafieerad, W. Yan, G. L. Sequiera, N. Sareen, E. Abu-El-Rub, M. Moudgil, S. Dhingra, Adv. Healthcare Mater. 2019, 8, 1900569; e) Z. Wang, H. Yang, Y. Bai, L. Cheng, R. Zhu, Biomed. Mater. 2022, 17, 024101; f) H. Li, D. He, X. Xiao, G. Yu, G. Hu, W. Zhang, X. Wen, Y. Lin, X. Li, H. Lin, ACS Appl. Mater. Interfaces 2021, 13, 25290.
- 20L. Ðorđević, F. Arcudi, M. Cacioppo, M. Prato, Nat. Nanotechnol. 2022, 17, 112.
- 21M. Moniruzzaman, S. D. Dutta, J. Hexiu, K. Ganguly, K.-T. Lim, J. Kim, Biomater. Sci. 2022, 10, 3527.
- 22Z. Yuan, X. Yuan, Y. Zhao, Q. Cai, Y. Wang, R. Luo, S. Yu, Y. Wang, J. Han, L. Ge, J. Huang, C. Xiong, Small 2021, 17, 2006596.
- 23a) W. Xu, B. Z. Molino, F. Cheng, P. J. Molino, Z. Yue, D. Su, X. Wang, S. Willför, C. Xu, G. G. Wallace, ACS Appl. Mater. Interfaces 2019, 11, 8838; b) N. Zandi, B. Dolatyar, R. Lotfi, Y. Shallageh, M. A. Shokrgozar, E. Tamjid, N. Annabi, A. Simchi, Acta Biomater. 2021, 124, 191; c) N. Annabi, D. Rana, E. Shirzaei Sani, R. Portillo-Lara, J. L. Gifford, M. M. Fares, S. M. Mithieux, A. S. Weiss, Biomaterials 2017, 139, 229; d) R. I. R. Ibañez, R. J. F. C. Do Amaral, R. L. Reis, A. P. Marques, C. M. Murphy, F. J. O'brien, Polymers 2021, 13, 2510.
- 24K. Ganguly, H. Jin, S. D. Dutta, D. K. Patel, T. V. Patil, K.-T. Lim, Carbohydr. Polym. 2022, 287, 119321.
- 25H. Kamata, X. Li, U.-I. Chung, T. Sakai, Adv. Healthcare Mater. 2015, 4, 2360.
- 26E. P. Milan, V. C. A. Martins, M. M. Horn, A. M. G. Plepis, Carbohydr. Polym. 2022, 292, 119647.
- 27D. Chawla, T. Kaur, A. Joshi, N. Singh, Int. J. Biol. Macromol. 2020, 144, 560.
- 28C. Ji, A. Khademhosseini, F. Dehghani, Biomaterials 2011, 32, 9719.
- 29a) H. Cui, W. Zhu, Y. Huang, C. Liu, Z.-X. Yu, M. Nowicki, S. Miao, Y. Cheng, X. Zhou, S.-J. Lee, Y. Zhou, S. Wang, M. Mohiuddin, K. Horvath, L. G. Zhang, Biofabrication 2019, 12, 015004; b) G. Janarthanan, S. Lee, I. Noh, Adv. Funct. Mater. 2021, 31, 2104441; c) S. D. Dutta, J. Bin, K. Ganguly, D. K. Patel, K.-T. Lim, RSC Adv. 2021, 11, 20342.
- 30S. D. Dutta, K. Ganguly, M.-S. Jeong, D. K. Patel, T. V. Patil, S.-J. Cho, K.-T. Lim, ACS Appl. Mater. Interfaces 2022, 14, 34513.
- 31a) S. Yi, Q. Liu, Z. Luo, J. J. He, H.-L. Ma, W. Li, D. Wang, C. Zhou, C. E. Garciamendez, L. Hou, J. Zhang, Y. S. Zhang, Small 2022, 18, 2106357; b) Z. Galliger, C. D. Vogt, H. R. Helms, A. Panoskaltsis-Mortari, Macromol. Mater. Eng. 2022, 307, 2200196.
- 32C. Yang, H. Ma, Z. Wang, M. R. Younis, C. Liu, C. Wu, Y. Luo, P. Huang, Adv. Sci. 2021, 8, 2100894.
- 33X. Wang, T. Li, H. Ma, D. Zhai, C. Jiang, J. Chang, J. Wang, C. Wu, NPG Asia Mater. 2017, 9, e376.
- 34a) K. Onbasli, M. Erkısa, G. Demirci, A. Muti, E. Ulukaya, A. Sennaroglu, H. Yagci Acar, Biomater. Sci. 2022, 10, 3951; b) S. D. Dutta, J. Hexiu, J. Kim, S. Sarkar, J. Mondal, J. M. An, Y.-K. Lee, M. Moniruzzaman, K.-T. Lim, Biomater. Sci. 2022, 10, 1680.
- 35a) F. Asghari, M. Samiei, K. Adibkia, A. Akbarzadeh, S. Davaran, Artif. Cells, Nanomed., Biotechnol. 2017, 45, 185; b) S. Lei, Y. Gao, J. Li, X. Chen, W. Zhou, J. Wu, P. Ma, K. Men, X. Duan, J. Controlled Release 2022, 344, 97.
- 36D. K. Patel, S. D. Dutta, K. Ganguly, K.-T. Lim, Int. J. Biol. Macromol. 2021, 170, 178.
- 37a) Y. Li, G. Bai, S. Zeng, J. Hao, ACS Appl. Mater. Interfaces 2019, 11, 4737; b) X.-L. Hu, N. Kwon, K.-C. Yan, A. C. Sedgwick, G.-R. Chen, X.-P. He, T. D. James, J. Yoon, Adv. Funct. Mater. 2020, 30, 1907906.
- 38D.-W. Zhao, C. Liu, K.-Q. Zuo, P. Su, L.-B. Li, G.-Y. Xiao, L. Cheng, Chem. Eng. J. 2021, 408, 127362.
- 39a) S. Wang, F. Wang, X. Zhao, F. Yang, Y. Xu, F. Yan, D. Xia, Y. Liu, Mater. Des. 2022, 217, 110621; b) L. Tan, J. Fu, F. Feng, X. Liu, Z. Cui, B. Li, Y. Han, Y. Zheng, K. W. K. Yeung, Z. Li, S. Zhu, Y. Liang, X. Feng, X. Wang, S. Wu, Sci. Adv. 2020, 6, eaba5723; c) Y. Zhao, L. Bai, Y. Zhang, R. Yao, Y. Sun, R. Hang, X. Chen, H. Wang, X. Yao, Y. Xiao, R. Hang, Biomaterials 2022, 288, 121684.
- 40W. Ying, P. S. Cheruku, F. W. Bazer, S. H. Safe, B. Zhou, J. Visualized Exp. 2013, 76, 50323.
- 41J. Chen, L. Deng, C. Porter, G. Alexander, D. Patel, J. Vines, X. Zhang, D. Chasteen-Boyd, H.-J. Sung, Y.-P. Li, Sci. Rep. 2018, 8, e15749.
- 42K. Yu, Z. Jiang, X. Miao, Z. Yu, X. Du, K. Lai, Y. Wang, G. Yang, Mol. Ther. 2022, 30, 3226.
- 43S. Boonrungsiman, E. Gentleman, R. Carzaniga, N. D. Evans, D. W. Mccomb, A. E. Porter, M. M. Stevens, Proc. Natl. Acad. Sci. USA 2012, 109, 14170.
- 44a) T. Wang, J. Bai, M. Lu, C. Huang, D. Geng, G. Chen, L. Wang, J. Qi, W. Cui, L. Deng, Nat. Commun. 2022, 13, e160; b) C. Yang, Z. Zheng, M. R. Younis, C. Dong, Y. Chen, S. Lei, D.-Y. Zhang, J. Wu, X. Wu, J. Lin, X. Wang, P. Huang, Adv. Funct. Mater. 2021, 31, 2101372.