Development of Fluorescently Labeled, Functional Type I Collagen Molecules
Seyed Mohammad Siadat
Department of Bioengineering, Northeastern University, Boston, MA, 02115 USA
Search for more papers by this authorAlexandra A. Silverman
Department of Bioengineering, Northeastern University, Boston, MA, 02115 USA
Search for more papers by this authorMonica E. Susilo
Department of Bioengineering, Northeastern University, Boston, MA, 02115 USA
Search for more papers by this authorJeffrey A. Paten
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02134 USA
Search for more papers by this authorCharles A. DiMarzio
Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115 USA
Search for more papers by this authorCorresponding Author
Jeffrey W. Ruberti
Department of Bioengineering, Northeastern University, Boston, MA, 02115 USA
E-mail: [email protected]
Search for more papers by this authorSeyed Mohammad Siadat
Department of Bioengineering, Northeastern University, Boston, MA, 02115 USA
Search for more papers by this authorAlexandra A. Silverman
Department of Bioengineering, Northeastern University, Boston, MA, 02115 USA
Search for more papers by this authorMonica E. Susilo
Department of Bioengineering, Northeastern University, Boston, MA, 02115 USA
Search for more papers by this authorJeffrey A. Paten
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02134 USA
Search for more papers by this authorCharles A. DiMarzio
Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115 USA
Search for more papers by this authorCorresponding Author
Jeffrey W. Ruberti
Department of Bioengineering, Northeastern University, Boston, MA, 02115 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
While de novo collagen fibril formation is well-studied, there are few investigations into the growth and remodeling of extant fibrils, where molecular collagen incorporation into and erosion from the fibril surface must delicately balance during fibril growth and remodeling. Observing molecule/fibril interactions is difficult, requiring the tracking of molecular dynamics while, at the same time, minimizing the effect of the observation on fibril structure and assembly. To address the observation-interference problem, exogenous collagen molecules are tagged with small fluorophores and the fibrillogenesis kinetics of labeled collagen molecules as well as the structure and network morphology of assembled fibrils are examined. While excessive labeling significantly disturbs fibrillogenesis kinetics and network morphology of assembled fibrils, adding less than ≈1.2 labels per collagen molecule preserves these characteristics. Applications of the functional, labeled collagen probe are demonstrated in both cellular and acellular systems. The functional, labeled collagen associates strongly with native fibrils and when added to an in vitro model of corneal stromal development at low concentration, the labeled collagen is incorporated into a fine extracellular matrix (ECM) network associated with the cells within 24 h.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
mabi202100144-sup-0001-SuppMat.pdf1.9 MB | Supporting Information |
mabi202100144-sup-0002-Video1.mp417 MB | Video 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. J. Mienaltowski, D. E. Birk, Adv. Exp. Med. Biol. 2014, 802, 5.
- 2F. P. Mall, Am. J. Anat. 1902, 1, 329.
- 3K. E. Kadler, Nat. Rev. Mol. Cell Biol. 2014, 15, 769.
- 4S. M. Siadat On the Mechanobiology of Collagen Growth and Remodelling, Northeastern University, MA, USA 2020.
10.17760/D20399932 Google Scholar
- 5R. L. Trelstad, K. Hayashi, Dev. Biol. 1979, 71, 228.
- 6D. J. Mcbride, R. A. Hahn, F. H. Silver, Int. J. Biol. Macromol. 1985, 7, 71.
- 7N. S. Kalson, Y. Lu, S. H. Taylor, T. Starborg, D. F. Holmes, K. E. Kadler, Elife 2015, 4, e05958.
- 8N. S. Kalson, D. F. Holmes, Z. Kapacee, I. Otermin, Y. Lu, R. A. Ennos, E. G. Canty-Laird, K. E. Kadler, Matrix Biol. 2010, 29, 678.
- 9Y. Du, E. C. Carlson, M. L. Funderburgh, D. E. Birk, E. Pearlman, N. Guo, W. W.-Y. Kao, J. L. Funderburgh, Stem Cells 2009, 27, 1635.
- 10C. L. Martin, M. R. Bergman, L. F. Deravi, J. A. Paten, Bioelectricity 2020, 2, 186.
- 11C. Seifert, F. Grater, Biochim. Biophys. Acta 2013, 1830, 4762.
- 12J. A. Paten, S. M. Siadat, M. E. Susilo, E. N. Ismail, J. L. Stoner, J. P. Rothstein, J. W. Ruberti, ACS Nano 2016, 10, 5027.
- 13M. L. Stearns, Am. J. Anat. 1940, 66, 133.
- 14M. L. Stearns, Dev. Dyn. 1940, 67, 55.
- 15M. E. Susilo, J. A. Paten, E. A. Sander, T. D. Nguyen, J. W. Ruberti, Interface Focus 2016, 6, 20150088.
- 16X. T. Wang, R. F. Ker, R. M. Alexander, J. Exp. Biol. 1995, 198, 847.
- 17J. Chang, R. Garva, A. Pickard, C.-.Y. C. Yeung, V. Mallikarjun, J. Swift, D. F. Holmes, B. Calverley, Y. Lu, A. Adamson, H. Raymond-Hayling, O. Jensen, T. Shearer, Q. J. Meng, K. E. Kadler, Nat. Cell Biol. 2020, 22, 74.
- 18S. M. Siadat, A. A. Silverman, C. A. DiMarzio, J. W. Ruberti, J. Struct. Biol. 2021, 213, 107697.
- 19T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, D. L. Becker, Biophys. J. 2006, 91, 4665.
- 20T. Starborg, N. S. Kalson, Y. Lu, A. Mironov, T. F. Cootes, D. F. Holmes, K. E. Kadler, Nat. Protoc. 2013, 8, 1433.
- 21N. de Jonge, D. B. Peckys, ACS Nano 2016, 10, 9061.
- 22K. N. Krahn, C. V. Bouten, S. van Tuijl, M. A. van Zandvoort, M. Merkx, Anal. Biochem. 2006, 350, 177.
- 23S. J. A. Aper, A. C. C. Van Spreeuwel, M. C. Van Turnhout, A. J. Van Der Linden, P. A. Pieters, N. L. L. Van Der Zon, S. L. De La Rambelje, C. V. C. Bouten, M. Merkx, PLoS One 2014, 9, e114983.
- 24K. Krempen, D. Grotkopp, K. Hall, A. Bache, A. Gillan, R. A. Rippe, D. A. Brenner, M. Breindl, Gene Expression 1999, 8, 151.
- 25T. D Grant, J. Cho, K. S. Ariail, N. B. Weksler, R. W. Smith, W. A. Horton, Dev. Dyn. 2000, 218, 394.
10.1002/(SICI)1097-0177(200006)218:2<394::AID-DVDY12>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 26I. Kalajzic, Z. Kalajzic, M. Kaliterna, G. Gronowicz, S. H. Clark, A. C. Lichtler, D. Rowe, J. Bone Miner. Res. 2002, 17, 15.
- 27Y. Lu, S. A. Kamel-El Sayed, K. Wang, L. M. Tiede-Lewis, M. A. Grillo, P. A. Veno, V. Dusevich, C. L. Phillips, L. F. Bonewald, S. L. Dallas, J. Bone Miner. Res. 2018, 33, 1166.
- 28A. K. Harris, D. Stopak, P. Warner, J. Embryol. Exp. Morphol. 1984, 80, 1.
- 29W. A. Cabral, M. V. Mertts, E. Makareeva, A. Colige, M. Tekin, A. Pandya, S. Leikin, J. C. Marini, J. Biol. Chem. 2003, 278, 10006.
- 30A. D. Doyle, Bio Protoc. 2018, 8, e2919.
- 31J. A. Paten, C. L. Martin, J. T. Wanis, S. M. Siadat, A. M. Figueroa-Navedo, J. W. Ruberti, L. F. Deravi, Chem 2019, 5, 2126.
- 32J. Gross, J. H. Highberger, F. O. Schmitt, Proc. Natl. Acad. Sci. U. S. A. 1954, 40, 679.
- 33J. Gross, J. Biophys. Biochem. Cytol. 1956, 2, 261.
- 34K. G. Vogel, M. Paulsson, D. Heinegard, Biochem. J. 1984, 223, 587.
- 35M. Bergmann, W. H. Stein, J. Biol. Chem. 1939, 128, 217.
- 36F. O. Schmitt, C. E. Hall, M. A. Jakus, J. Cell. Comp. Physiol. 1942, 20, 11.
- 37R. F. Diegelmann, B. Peterkofsky, Dev. Biol. 1972, 28, 443.
- 38G. J. Laurent, R. J. McAnulty, J. Gibson, Am. J. Physiol. 1985, 249, C352.
- 39M. M. Rubin, K. A. Piez, A. Katchalsky, Biochemistry 1969, 8, 3628.
- 40B. R. Williams, R. A. Gelman, D. C. Poppke, K. A. Piez, J. Biol. Chem. 1978, 253, 6578.
- 41F. H. Silver, D. E. Birk, Collagen Relat. Res. 1983, 3, 393.
- 42K. E. Kadler, Y. Hojima, D. J. Prockop, J. Biol. Chem. 1987, 262, 15696.
- 43J. A. Rada, V. R. Achen, C. A. Perry, P. W. Fox, Invest. Ophthalmol. Visual Sci. 1997, 38, 1740.
- 44L. Coster, L. A. Fransson, Biochem. J. 1981, 193, 143.
- 45C. G. Armstrong, V. C. Mow, J. Bone Jt. Surg., Am. Vol. 1982, 64, 88.
- 46B. P. Toole, D. A. Lowther, Arch. Biochem. Biophys. 1968, 128, 567.
- 47J. A. Rada, P. K. Cornuet, J. R. Hassell, Exp. Eye Res. 1993, 56, 635.
- 48K. G. Danielson, H. Baribault, D. F. Holmes, H. Graham, K. E. Kadler, R. V. Iozzo, J. Cell Biol. 1997, 136, 729.
- 49J. E. Scott, C. R. Orford, E. W. Hughes, Biochem. J. 1981, 195, 573.
- 50A. K. Harris, D. Stopak, P. Wild, Nature 1981, 290, 249.
- 51D. Stopak, N. K. Wessells, A. K. Harris, Proc. Natl. Acad. Sci. U. S. A. 1985, 82, 2804.
- 52R. T. Kendall, C. A. Feghali-Bostwick, Front. Pharmacol. 2014, 5, 123.
- 53G. Gabbiani, C. Chaponnier, I. Huttner, J. Cell Biol. 1978, 76, 561.
- 54H. P. Ehrlich, J. B. Rajaratnam, Tissue Cell 1990, 22, 407.
- 55P. Roy, W. M. Petroll, H. D. Cavanagh, C. J. Chuong, J. V. Jester, Exp. Cell Res. 1997, 232, 106.
- 56N. S. Kalson, T. Starborg, Y. Lu, A. Mironov, S. M. Humphries, D. F. Holmes, K. E. Kadler, Proc. Natl. Acad. Sci. U. S. A. 2013, 110, E4743.
- 57M. Miron-Mendoza, J. Seemann, F. Grinnell, Mol. Biol. Cell 2008, 19, 2051.
- 58C. G. Bellows, A. H. Melcher, J. E. Aubin, J. Cell Sci. 1982, 58, 125.
- 59R. Zareian, M. E. Susilo, J. A. Paten, J. P. Mclean, J. Hollmann, D. Karamichos, C. S. Messer, D. T. Tambe, N. Saeidi, J. D. Zieske, J. W. Ruberti, Tissue Eng., Part A 2016, 22, 1204.
- 60C. Guidry, F. Grinnell, Collagen Relat. Res. 1987, 6, 515.
- 61E. M. Bueno, N. Saeidi, S. Melotti, J. W. Ruberti, Tissue Eng., Part A 2009, 15, 3559.
- 62E. Leikina, M. V. Mertts, N. Kuznetsova, Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 1314.
- 63M. C. Melander, H. J. Jürgensen, D. H. Madsen, L. H. Engelholm, N. Behrendt, Int. J. Oncol. 2015, 47, 1177.
- 64E. G. Canty, Y. Lu, R. S. Meadows, M. K. Shaw, D. F. Holmes, K. E. Kadler, J. Cell Biol. 2004, 165, 553.
- 65D. E. Birk, M. V. Nurminskaya, E. I. Zycband, Dev. Dyn. 1995, 202, 229.
- 66R. P. Alzola, S. M. Siadat, A. Gajjar, R. Stureborg, J. W. Ruberti, J. Delpiano, C. A. Dimarzio, J. Biomed. Opt. 2021, 26, 076501.
- 67G. T. Hermanson, Bioconjugate Techniques, Academic Press, MA, USA 2013.
- 68S. Han, E. Makareeva, N. V. Kuznetsova, A. M. Deridder, M. B. Sutter, W. Losert, C. L. Phillips, R. Visse, H. Nagase, S. Leikin, J. Biol. Chem. 2010, 285, 22276.
- 69Y. Liu, R. Ballarini, S. J. Eppell, Interface Focus 2016, 6, 20150080.
- 70A. P. Bhole, B. P. Flynn, M. Liles, N. Saeidi, C. A. Dimarzio, J. W. Ruberti, Philos. Trans. R. Soc., A 2009, 367, 3339.
- 71S. Li, C. Van Den Diepstraten, S. J. D'Souza, B. M. Chan, J. G. Pickering, Am. J. Pathol. 2003, 163, 1045.
- 72V. C. Coffman, J. Q. Wu, Trends Biochem. Sci. 2012, 37, 499.
- 73M. Bass, Handbook of Optics: Fiber Optics and Nonlinear Optics, Vol. IV, McGraw-Hill, New York 2001.
- 74K. M. Meek, D. W. Leonard, Biophys. J. 1993, 64, 273.
- 75A. Daxer, K. Misof, B. Grabner, A. Ettl, P. Fratzl, Invest. Ophthalmol. Visual Sci. 1998, 39, 644.
- 76J. A. Petruska, A. J. Hodge, Proc. Natl. Acad. Sci. U. S. A. 1964, 51, 871.