Folate-Conjugated PEG on Single Walled Carbon Nanotubes for Targeting Delivery of Doxorubicin to Cancer Cells
Lvye Niu
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Search for more papers by this authorCorresponding Author
Lingjie Meng
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Lingjie Meng, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Qinghua Lu, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Search for more papers by this authorCorresponding Author
Qinghua Lu
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Lingjie Meng, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Qinghua Lu, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Search for more papers by this authorLvye Niu
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Search for more papers by this authorCorresponding Author
Lingjie Meng
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Lingjie Meng, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Qinghua Lu, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Search for more papers by this authorCorresponding Author
Qinghua Lu
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Lingjie Meng, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Qinghua Lu, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Search for more papers by this authorAbstract
A highly effective drug carrier is constructed by coating folic acid-terminated poly(ethylene glycol) (PEG-FA) on single walled carbon nanotubes (SWNTs) in a facile non-covalent method. The anti-cancer drug, doxorubicin (DOX), is further loaded on the surface of SWNTs at a very high loading efficiency, 149.3 ± 4.1%. The drug system (DOX/PEG-FA/SWNTs) exhibits excellent stability under neutral pH conditions such as serum, but dramatically releases DOX at reduced pH typical of the tumour environment and intracellular lysosomes and endosomes. With the help of FA, DOX/PEG-FA/SWNTs tend to selectively attach onto cancer cells and enter the lysosomes or endosomes by clathrin-mediated endocytosis. This can greatly improve the pharmaceutical efficiency and reduce potential side effects.
References
- 1 D. M. Parkin, F. Bray, J. Ferlay, P. Pisani, Int. J. Cancer 2001, 94, 153.
- 2 H. E. Karim-Kos, E. de Vries, I. Soerjomataram, V. Lemmens, S. Siesling, J. W. W. Coebergh, Eur. J. Cancer 2008, 44, 1345.
- 3 R. Baskar, K. A. Lee, R. Yeo, K. W. Yeoh, Int. J. Med. Sci. 2012, 9, 193.
- 4 A. S. Hoffman, J. Controlled Release 2008, 132, 153.
- 5 Z. Liu, Y. Jiao, Y. Wang, C. Zhou, Z. Zhang, Adv. Drug Delivery Rev. 2008, 60, 1650.
- 6 B. Tang, G. Cheng, J. Gu, C. Xu, Drug Discovery Today 2008, 13, 606.
- 7 L. Wei, C. Cai, J. Lin, T. Chen, Biomaterials 2009, 30, 2606.
- 8 Y. Matsumura, H. Maeda, Cancer Res. 1986, 46, 6387.
- 9 M. E. Davis, Z. Chen, D. M. Shin, Nat. Rev. Drug Discovery 2008, 7, 771.
- 10 Z. Liu, J. T. Robinson, X. Sun, H. Dai, J. Am. Chem. Soc. 2008, 130, 10876.
- 11 M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Mueller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Nat. Mater. 2010, 9, 101.
- 12 M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, J. I. Zink, ACS Nano 2008, 2, 889.
- 13 J. K. Oh, R. Drumright, D. J. Siegwart, K. Matyjaszewski, Prog. Polym. Sci. 2008, 33, 448.
- 14 C. Sun, J. S. H. Lee, M. Zhang, Adv. Drug Delivery Rev. 2008, 60, 1252.
- 15 T. M. Allen, Trends Pharmacol. Sci. 1994, 15, 215.
- 16 G. Gregoriadis, Trends Biotechnol. 1995, 13, 527.
- 17 D. Astruc, E. Boisselier, C. Ornelas, Chem. Rev. 2010, 110, 1857.
- 18 P. Ghosh, G. Han, M. De, C. K. Kim, V. M. Rotello, Adv. Drug Delivery Rev. 2008, 60, 1307.
- 19 P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Ferey, P. Couvreur, R. Gref, Nat. Mater. 2010, 9, 172.
- 20 J.-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S. N. Bhatia, M. J. Sailor, Nat. Mater. 2009, 8, 331.
- 21 Z. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, H. Dai, Cancer Res. 2008, 68, 6652.
- 22 Z. Liu, S. Tabakman, K. Welsher, H. Dai, Nano Res. 2009, 2, 85.
- 23 L. Meng, X. Zhang, Q. Lu, Z. Fei, P. J. Dyson, Biomaterials 2012, 33, 1689.
- 24 G. Jia, H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, Y. Zhao, X. Guo, Environ. Sci. Technol. 2005, 39, 1378.
- 25 J. Muller, F. Huaux, N. Moreau, P. Misson, J. F. Heilier, M. Delos, M. Arras, A. Fonseca, J. B. Nagy, D. Lison, Toxicol. Appl. Pharmacol. 2005, 207, 221.
- 26 Z. Liu, X. Sun, N. Nakayama-Ratchford, H. Dai, ACS Nano 2007, 1, 50.
- 27 Z. Liu, X. Sun, N. Nakayama-Ratchford, H. Dai, ACS Nano 2007, 1, 50.
- 28 B. Zhao, H. Hu, A. P. Yu, D. Perea, R. C. Haddon, J. Am. Chem. Soc. 2005, 127, 8197.
- 29 X. Zhang, L. Meng, Q. Lu, Z. Fei, P. J. Dyson, Biomaterials 2009, 30, 6041.
- 30 R. Yang, Z. Tang, J. Yan, H. Kang, Y. Kim, Z. Zhu, W. Tan, Anal. Chem. 2008, 80, 7408.
- 31 G. C. Jensen, X. Yu, J. Gong, B. Munge, A. Bhirde, S. N. Kim, F. Papadimitrakopoulos, J. F. Rusling, J. Nanosci. Nanotechnol. 2009, 9, 249.
- 32 E. Menna, G. Scorrano, M. Maggini, M. Cavallaro, F. Della Negra, M. Battagliarin, R. Bozio, F. Fantinel, M. Meneghetti, ARKIVOC 2003, 64.
- 33 Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen, X. Sun, X. Chen, H. Dai, Nat. Nanotechnol. 2007, 2, 47.
- 34 B. Stella, S. Arpicco, M. T. Peracchia, D. Desmaele, J. Hoebeke, M. Renoir, J. D'Angelo, L. Cattel, P. Couvreur, J. Pharm. Sci. 2000, 89, 1452.
- 35 E. Roger, S. Kalscheuer, A. Kirtane, B. R. Guru, A. E. Grill, J. Whittum-Hudson, J. Panyam, Mol. Pharm. 2012, 9, 2103.
- 36 N. Nakayama-Ratchford, S. Bangsaruntip, X. Sun, K. Welsher, H. Dai, J. Am. Chem. Soc. 2007, 129, 2448.
- 37 Z. Ji, G. Lin, Q. Lu, L. Meng, X. Shen, L. Dong, C. Fu, X. Zhang, J. Colloid Interface Sci. 2012, 365, 143.
- 38 X. Zhang, L. Meng, X. Wang, Q. Lu, Chem. Eur. J. 2010, 16, 556.
- 39 P. Singh, U. Gupta, A. Asthana, N. K. Jain, Bioconjugate Chem. 2008, 19, 2239.
- 40 K. Kostarelos, A. Bianco, M. Prato, Nat. Nanotechnol. 2009, 4, 627.
- 41 M. Prato, K. Kostarelos, A. Bianco, Acc. Chem. Res. 2008, 41, 60.
- 42 T. Muralkami, J. Fan, M. Yudasaka, S. Iijima, K. Shiba, Mol. Pharm. 2006, 3, 407.
- 43 Z. Liu, A. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, H. Dai, Angew. Chem., Int. Ed. 2009, 48, 7668.
- 44 V. G. S. Box, J. Mol. Graphics Modell. 2007, 26, 14.