Therapeutic potential of microRNAs in osteoporosis function by regulating the biology of cells related to bone homeostasis
Wenhua Zhao
Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorGengyang Shen
Guangzhou University of Chinese Medicine, Guangzhou, China
Gengyang Shen and Hui Ren have contributed equally as first author.
Search for more papers by this authorHui Ren
Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
Gengyang Shen and Hui Ren have contributed equally as first author.
Search for more papers by this authorDe Liang
Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorXiang Yu
Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorZhida Zhang
Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorJinjing Huang
Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorTing Qiu
Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorJingjing Tang
Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorQi Shang
Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorPeiyuan Yu
Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorZixian Wu
Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorCorresponding Author
Xiaobing Jiang
Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
Correspondence Xiaobing Jiang, PhD, MD, Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China. Email: [email protected]
Search for more papers by this authorWenhua Zhao
Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorGengyang Shen
Guangzhou University of Chinese Medicine, Guangzhou, China
Gengyang Shen and Hui Ren have contributed equally as first author.
Search for more papers by this authorHui Ren
Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
Gengyang Shen and Hui Ren have contributed equally as first author.
Search for more papers by this authorDe Liang
Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorXiang Yu
Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorZhida Zhang
Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorJinjing Huang
Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorTing Qiu
Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorJingjing Tang
Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorQi Shang
Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorPeiyuan Yu
Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorZixian Wu
Guangzhou University of Chinese Medicine, Guangzhou, China
Search for more papers by this authorCorresponding Author
Xiaobing Jiang
Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
Correspondence Xiaobing Jiang, PhD, MD, Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China. Email: [email protected]
Search for more papers by this authorAbstract
MicroRNAs (miRNAs) are novel regulatory factors that play important roles in numerous cellular processes through the posttranscriptional regulation of gene expression. Recently, deregulation of the miRNA-mediated mechanism has emerged as an important pathological factor in osteoporosis. However, a detailed molecular mechanism between miRNAs and osteoporosis is still not available. In this review, the roles of miRNAs in the regulation of cells related to bone homeostasis as well as miRNAs that deregulate in human or animal are discussed. Moreover, the miRNAs that act as clusters in the biology of cells in the bone microenvironment and the difference of some important miRNAs for bone homeostasis between bone and other organs are mentioned. Overall, miRNAs that contribute to the pathogenesis of osteoporosis and their therapeutic potential are considered.
CONFLICTS OF INTEREST
The authors declare that there are no conflicts of interest.
REFERENCES
- Ahn, T. K., Kim, J. O., Kumar, H., Choi, H., Jo, M. J., Sohn, S., … Han, I. B. (2017). Polymorphisms of miR-146a, miR-149, miR-196a2, and miR-499 are associated with osteoporotic vertebral compression fractures in Korean postmenopausal women. Journal of Orthopaedic Research, 36, 244–253.
- An, J. H., Ohn, J. H., Song, J. A., Yang, J. Y., Park, H., Choi, H. J., … Shin, C. S. (2014). Changes of microRNA profile and microRNA-mRNA regulatory network in bones of ovariectomized mice. Journal of Bone and Mineral Research, 29(3), 644–656.
- Anderson, B. A., & McAlinden, A. (2017). miR-483 targets SMAD4 to suppress chondrogenic differentiation of human mesenchymal stem cells. Journal of Orthopaedic Research, 35(11), 2369–2377.
- Ba, S., Xuan, Y., Long, Z. W., Chen, H. Y., & Zheng, S. S. (2017). MicroRNA-27a promotes the proliferation and invasiveness of colon cancer cells by targeting SFRP1 through the Wnt/beta-catenin signaling pathway. Cellular Physiology and Biochemistry, 42(5), 1920–1933.
- Bae, Y., Yang, T., Zeng, H. C., Campeau, P. M., Chen, Y., Bertin, T., … Lee, B. H. (2012). miRNA-34c regulates Notch signaling during bone development. Human Molecular Genetics, 21(13), 2991–3000.
- Budd, E., De andrés, M. C., Sanchez-Elsner, T., & Oreffo, R. O. C. (2017). MiR-146b is down-regulated during the chondrogenic differentiation of human bone marrow derived skeletal stem cells and up-regulated in osteoarthritis. Scientific Reports, 7, 46704.
- Candini, O., Spano, C., Murgia, A., Grisendi, G., Veronesi, E., Piccinno, M. S., … Dominici, M. (2015). Mesenchymal progenitors aging highlights a miR-196 switch targeting HOXB7 as master regulator of proliferation and osteogenesis. Stem Cells, 33(3), 939–950.
- Cao, Z., Moore, B. T., Wang, Y., Peng, X. H., Lappe, J. M., Recker, R. R., & Xiao, P. (2014). MiR-422a as a potential cellular microRNA biomarker for postmenopausal osteoporosis. PLoS One, 9(5), e97098.
- Casado-Díaz, A., Anter, J., Müller, S., Winter, P., Quesada-Gómez, J. M., & Dorado, G. (2017). Transcriptomic analyses of adipocyte differentiation from human mesenchymal stromal-cells (MSC). Journal of Cellular Physiology, 232(4), 771–784.
- Chang, H., Liu, Y. H., Wang, L. L., Wang, J., Zhao, Z. H., Qu, J. F., & Wang, S. F. (2018). MiR-182 promotes cell proliferation by suppressing FBXW7 and FBXW11 in non-small cell lung cancer. American Journal of Translational Research, 10(4), 1131–1142.
- Chen, X., Du, J., Jiang, R., & Li, L. (2018). MicroRNA-214 inhibits the proliferation and invasion of lung carcinoma cells by targeting JAK1. American Journal of Translational Research, 10(4), 1164–1171.
- Davis, C., Dukes, A., Drewry, M., Helwa, I., Johnson, M. H., Isales, C. M., … Hamrick, M. W. (2017). MicroRNA-183-5p increases with age in bone-derived extracellular vesicles, suppresses bone marrow stromal (stem) cell proliferation, and induces stem cell senescence. Tissue Engineering. Part A, 23(21–22), 1231–1240.
- Deng, X., Zheng, H., Li, D., Xue, Y., Wang, Q., Yan, S., … Deng, M. (2018). MicroRNA-34a regulates proliferation and apoptosis of gastric cancer cells by targeting silent information regulator 1. Experimental and Therapeutic Medicine, 15(4), 3705–3714.
- De-Ugarte, L., Yoskovitz, G., Balcells, S., Güerri-Fernández, R., Martinez-Diaz, S., Mellibovsky, L., … Díez-Pérez, A. (2015). MiRNA profiling of whole trabecular bone: Identification of osteoporosis-related changes in MiRNAs in human hip bones. BMC Medical Genomics, 8, 75.
- Dong, Y., Liu, Y., Jiang, A., Li, R., Yin, M., & Wang, Y. (2018). MicroRNA-335 suppresses the proliferation, migration, and invasion of breast cancer cells by targeting EphA4. Molecular and Cellular Biochemistry, 439(1-2), 95–104.
- Ell, B., Mercatali, L., Ibrahim, T., Campbell, N., Schwarzenbach, H., Pantel, K., … Kang, Y. (2013). Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell, 24(4), 542–556.
- Elsafadi, M., Manikandan, M., Alajez, N. M., Hamam, R., Dawud, R. A., Aldahmash, A., … Mahmood, A. (2017). MicroRNA-4739 regulates osteogenic and adipocytic differentiation of immortalized human bone marrow stromal cells via targeting LRP3. Stem Cell Research, 20, 94–104.
- Eskildsen, T., Taipaleenmaki, H., Stenvang, J., Abdallah, B. M., Ditzel, N., Nossent, A. Y., … Kassem, M. (2011). MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proceedings of the National Academy of Sciences of the United States of America, 108(15), 6139–6144.
- Feng, Z., Li, Z., Zhu, D., Ling, W., Zheng, L., Pu, L., & Kong, L. (2017). Mir-24 regulates hepatocyte apoptosis via BIM during acute liver failure. American Journal of Translational Research, 9(11), 4925–4935.
- Florencio-Silva, R., Sasso, G. R. S., Simões, M. J., Simões, R. S., Baracat, M. C. P., Sasso-Cerri, E., & Cerri, P. S. (2017). Osteoporosis and autophagy: What is the relationship? Revista Da Associacao Medica Brasileira, 63(2), 173–179.
- Fordham, J. B., Guilfoyle, K., Naqvi, A. R., & Nares, S. (2016). MiR-142-3p is a RANKL-dependent inducer of cell death in osteoclasts. Scientific Reports, 6, 24980.
- Franceschetti, T., Dole, N. S., Kessler, C. B., Lee, S. K., & Delany, A. M. (2014). Pathway analysis of microRNA expression profile during murine osteoclastogenesis. PLoS One, 9(9), e107262.
- Franceschetti, T., Kessler, C. B., Lee, S. K., & Delany, A. M. (2013). miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration. Journal of Biological Chemistry, 288(46), 33347–33360.
- Fu, J., Hao, L., Tian, Y., Liu, Y., Gu, Y., & Wu, J. (2018). miR-199a-3p is involved in estrogen-mediated autophagy through the IGF-1/mTOR pathway in osteocyte-like MLO-Y4 cells. Journal of Cellular Physiology, 233(3), 2292–2303.
- Gao, F., Sun, M., Gong, Y., Wang, H., Wang, Y., & Hou, H. (2016). MicroRNA-195a-3p inhibits angiogenesis by targeting Mmp2 in murine mesenchymal stem cells. Molecular Reproduction and Development, 83(5), 413–423.
- Gao, X. M., Zhu, Y., Li, J. H., Wang, X. Y., Zhang, X. F., Yi, C. H., & Yang, X. (2018). microRNA-26a induces a mitochondrial apoptosis mediated by p53 through targeting to inhibit Mcl1 in human hepatocellular carcinoma. OncoTargets and Therapy, 11, 2227–2239.
- Gu, C., Xu, Y., Zhang, S., Guan, H., Song, S., Wang, X., … Zhao, G. (2016). miR-27a attenuates adipogenesis and promotes osteogenesis in steroid-induced rat BMSCs by targeting PPARgamma and GREM1. Scientific Reports, 6, 38491.
- Guo, L., Xu, J., Qi, J., Zhang, L., Wang, J., Liang, J., … Deng, L. (2013). MicroRNA-17-92a upregulation by estrogen leads to Bim targeting and inhibition of osteoblast apoptosis. Journal of Cell Science, 126(Pt 4), 978–988.
- Guo, S., Chen, C., Ji, F., Mao, L., & Xie, Y. (2017). PP2A catalytic subunit silence by microRNA-429 activates AMPK and protects osteoblastic cells from dexamethasone. Biochemical and Biophysical Research Communications, 487(3), 660–665.
- Guérit, D., Brondello, J. M., Chuchana, P., Philipot, D., Toupet, K., Bony, C., … Noël, D. (2014). FOXO3A regulation by miRNA-29a controls chondrogenic differentiation of mesenchymal stem cells and cartilage formation. Stem Cells and Development, 23(11), 1195–1205.
- Guérit, D., Philipot, D., Chuchana, P., Toupet, K., Brondello, J. M., Mathieu, M., … Noël, D. (2013). Sox9-regulated miRNA-574-3p inhibits chondrogenic differentiation of mesenchymal stem cells. PLoS One, 8(4), e62582.
- He, S., Guo, W., Deng, F., Chen, K., Jiang, Y., Dong, M., … Chen, X. (2018). Targeted delivery of microRNA 146b mimic to hepatocytes by lactosylated PDMAEMA nanoparticles for the treatment of NAFLD. Artificial cells, Nanomedicine, and Biotechnology, 1–12.
- Heilmeier, U., Hackl, M., Skalicky, S., Weilner, S., Schroeder, F., Vierlinger, K., … Link, T. M. (2016). Serum miRNA signatures are indicative of skeletal fractures in postmenopausal women with and without type 2 diabetes and influence osteogenic and adipogenic differentiation of adipose tissue-derived mesenchymal stem cells in vitro. Journal of Bone and Mineral Research, 31(12), 2173–2192.
- Hu, R., Liu, W., Li, H., Yang, L., Chen, C., Xia, Z. Y., … Luo, X. H. (2011). A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. Journal of Biological Chemistry, 286(14), 12328–12339.
- Hummel, R., Wang, T., Watson, D. I., Michael, M. Z., Van der Hoek, M., Haier, J., & Hussey, D. J. (2011). Chemotherapy-induced modification of microRNA expression in esophageal cancer. Oncology Reports, 26(4), 1011–1017.
- Jin, T., Lu, Y., He, Q. X., Wang, H., Li, B. F., Zhu, L. Y., & Xu, Q. Y. (2015). The role of microRNA, miR-24, and its target CHI3L1 in osteomyelitis caused by Staphylococcus aureus. Journal of Cellular Biochemistry, 116(12), 2804–2813.
- Ke, K., Sul, O. J., Rajasekaran, M., & Choi, H. S. (2015). MicroRNA-183 increases osteoclastogenesis by repressing heme oxygenase-1. Bone, 81, 237–246.
- Kemp, J. P., Morris, J. A., Medina-Gomez, C., Forgetta, V., Warrington, N. M., Youlten, S. E., … Evans, D. M. (2017). Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nature Genetics, 49(10), 1468–1475.
- Kilpinen, L., Parmar, A., Greco, D., Korhonen, M., Lehenkari, P., Saavalainen, P., & Laitinen, S. (2016). Expansion induced microRNA changes in bone marrow mesenchymal stromal cells reveals interplay between immune regulation and cell cycle. Aging, 8(11), 2799–2813.
- Kim, E. H., Kim, D. H., Kim, H. R., Kim, S. Y., Kim, H. H., & Bang, O. Y. (2016). Stroke serum priming modulates characteristics of mesenchymal stromal cells by controlling the expression miRNA-20a. Cell Transplantation, 25(8), 1489–1499.
- Kim, K. M., Park, S. J., Jung, S. H., Kim, E. J., Jogeswar, G., Ajita, J., … Lim, S. K. (2012). miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1. Journal of Bone and Mineral Research, 27(8), 1669–1679.
- Kureel, J., Dixit, M., Tyagi, A. M., Mansoori, M. N., Srivastava, K., Raghuvanshi, A., … Singh, D. (2014). miR-542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation. Cell Death & Disease, 5, e1050–e1050.
- Lang, B., & Zhao, S. (2018). miR-486 functions as a tumor suppressor in esophageal cancer by targeting CDK4/BCAS2. Oncology Reports, 39(1), 71–80.
- Lee, S., Yun, I., Ham, O., Lee, S. Y., Lee, C. Y., Park, J. H., … Hwang, K. C. (2015). Suppression of miR-181a attenuates H2O2-induced death of mesenchymal stem cells by maintaining hexokinase II expression. Biological Research, 48, 45.
- Li, H., Wang, Z., Fu, Q., & Zhang, J. (2014). Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients. Biomarkers, 19(7), 553–556.
- Li, K. C., Chang, Y. H., Yeh, C. L., & Hu, Y. C. (2016). Healing of osteoporotic bone defects by baculovirus-engineered bone marrow-derived MSCs expressing MicroRNA sponges. Biomaterials, 74, 155–166.
- Li, Y., Jiang, J. L., Yang, J. S., & Gao, L. (2015). Low expression of microRNA-21 contributes to LPS-induced osteoblast cell apoptosis through up-regulation of OAS1. Cellular and Molecular Biology, 61(5), 68–73.
- Liao, D., Li, T., Ye, C., Zeng, L., Li, H., Pu, X., … Huang, G. L. (2018). miR-221 inhibits autophagy and targets TP53INP1 in colorectal cancer cells. Experimental and Therapeutic Medicine, 15(2), 1712–1717.
- Lin, N. Y., Chen, C. W., Kagwiria, R., Liang, R., Beyer, C., Distler, A., … Distler, J. H. (2016). Inactivation of autophagy ameliorates glucocorticoid-induced and ovariectomy-induced bone loss. Annals of the Rheumatic Diseases, 75(6), 1203–1210.
- Liu, F., Zhang, W. L., Meng, H. Z., Cai, Z. Y., & Yang, M. W. (2017). Regulation of DMT1 on autophagy and apoptosis in osteoblast. International Journal of Medical Sciences, 14(3), 275–283.
- Liu, T., Qin, A. P., Liao, B., Shao, H. G., Guo, L. J., Xie, G. Q., … Jiang, T. J. (2014). A novel microRNA regulates osteoclast differentiation via targeting protein inhibitor of activated STAT3 (PIAS3). Bone, 67, 156–165.
- Liu, X. D., Cai, F., Liu, L., Zhang, Y., & Yang, A. L. (2015). MicroRNA-210 is involved in the regulation of postmenopausal osteoporosis through promotion of VEGF expression and osteoblast differentiation. Biological Chemistry, 396(4), 339–347.
- Luo, D., Ren, H., Li, T., Lian, K., & Lin, D. (2016). Rapamycin reduces severity of senile osteoporosis by activating osteocyte autophagy. Osteoporosis International, 27(3), 1093–1101.
- Lv, C., Wang, L., Zhu, X., Lin, W., Chen, X., Huang, Z., … Yang, S. (2018). Glucosamine promotes osteoblast proliferation by modulating autophagy via the mammalian target of rapamycin pathway. Biomedicine and Pharmacotherapy, 99, 271–277.
- M'Baya-Moutoula, E., Louvet, L., Metzinger-Le meuth, V., Massy, Z. A., & Metzinger, L. (2015). High inorganic phosphate concentration inhibits osteoclastogenesis by modulating miR-223. Biochimica et Biophysica Acta, 1852(10 Pt A), 2202–2212.
- Ma, Y., Qi, M., An Y., Zhang, L., Yang, R., Doro, D. H., … Jin, Y. (2018). Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging cell, 17(1), e12709.
- Meng, J., Zhang, D., Pan, N., Sun, N., Wang, Q., Fan, J., … Jiang, L. (2015). Identification of miR-194-5p as a potential biomarker for postmenopausal osteoporosis. PeerJ, 3, e971.
- Miyaki, S., Nakasa, T., Otsuki, S., Grogan, S. P., Higashiyama, R., Inoue, A., … Asahara, H. (2009). MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthtitis and Rheumatism, 60(9), 2723–2730.
- Mohd, A. N., Boo, L., Yeap, S. K., Ky, H., Satharasinghe, D. A., Liew, W. C., … Kamarul, T. (2016). Probable impact of age and hypoxia on proliferation and microRNA expression profile of bone marrow-derived human mesenchymal stem cells. PeerJ, 4, e1536.
- Nakamura, T., Imai, Y., Matsumoto, T., Sato, S., Takeuchi, K., Igarashi, K., … Kato, S. (2007). Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell, 130(5), 811–823.
- Nicolè, L., Cappellesso, R., Sanavia, T., Guzzardo, V., & Fassina, A. (2018). MiR-21 over-expression and programmed cell death 4 down-regulation features malignant pleural mesothelioma. Oncotarget, 9(25), 17300–17308.
- Nie, Y., Han, B. M., Liu, X. B., Yang, J. J., Wang, F., Cong, X. F., & Chen, X. (2011). Identification of microRNAs involved in hypoxia- and serum deprivation-induced apoptosis in mesenchymal stem cells. International Journal of Biological Sciences, 7(6), 762–768.
- Nollet, M., Santucci-Darmanin, S., Breuil, V., Al-Sahlanee, R., Cros, C., Topi, M., … Pierrefite-Carle, V. (2014). Autophagy in osteoblasts is involved in mineralization and bone homeostasis. Autophagy, 10(11), 1965–1977.
- Ozeki, N., Hase, N., Hiyama, T., Yamaguchi, H., Kawai-Asano, R., Nakata, K., & Mogi, M. (2017). MicroRNA-211 and autophagy-related gene 14 signaling regulate osteoblast-like cell differentiation of human induced pluripotent stem cells. Experimental Cell Research, 352(1), 63–74.
- Panach, L., Mifsut, D., Tarín, J. J., Cano, A., & García-Pérez, M. Á. (2015). Serum circulating microRNAs as biomarkers of osteoporotic fracture. Calcified Tissue International, 97(5), 495–505.
- Pierrefite-Carle, V., Santucci-Darmanin, S., Breuil, V., Camuzard, O., & Carle, G. F. (2015). Autophagy in bone: Self-eating to stay in balance. Ageing Research Reviews, 24(Pt B), 206–217.
- Qin, Y., Peng, Y., Zhao, W., Pan, J., Ksiezak-Reding, H., Cardozo, C., … Qin, W. (2017). Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication. Journal of Biological Chemistry, 292(26), 11021–11033.
- Rossi, M., Pitari, M. R., Amodio, N., Di Martino, M. T., Conforti, F., Leone, E., … Tassone, P. (2013). miR-29b negatively regulates human osteoclastic cell differentiation and function: Implications for the treatment of multiple myeloma-related bone disease. Journal of Cellular Physiology, 228(7), 1506–1515.
- Sato, M., Suzuki, T., Kawano, M., & Tamura, M. (2017). Circulating osteocyte-derived exosomes contain miRNAs which are enriched in exosomes from MLO-Y4 cells. Biomedical Reports, 6(2), 223–231.
- Seeliger, C., Karpinski, K., Haug, A. T., Vester, H., Schmitt, A., Bauer, J. S., & van Griensven, M. (2014). Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. Journal of Bone and Mineral Research, 29(8), 1718–1728.
- Shen, G., Ren, H., Qiu, T., Liang, D., Xie, B., Zhang, Z., … Jiang, X. (2016). Implications of the interaction between miRNAs and autophagy in osteoporosis. Calcified Tissue International, 99(1), 1–12.
- Shen, G., Ren, H., Qiu, T., Zhang, Z., Zhao, W., Yu, X., … Jiang, X. (2018). Mammalian target of rapamycin as a therapeutic target in osteoporosis. Journal of Cellular Physiology, 233(5), 3929–3944.
- Shi, C., Qi, J., Huang, P., Jiang, M., Zhou, Q., Zhou, H., … Deng, L. (2014). MicroRNA-17/20a inhibits glucocorticoid-induced osteoclast differentiation and function through targeting RANKL expression in osteoblast cells. Bone, 68, 67–75.
- Shi, Q., Zhou, Z., Ye, N., Chen, Q., Zheng, X., & Fang, M. (2017). MiR-181a inhibits non-small cell lung cancer cell proliferation by targeting CDK1. Cancer Biomarkers, 20(4), 539–546.
- Shi, X. F., Wang, H., Xiao, F. J., Yin, Y., Xu, Q. Q., Ge, R. L., & Wang, L. S. (2016). MiRNA-486 regulates angiogenic activity and survival of mesenchymal stem cells under hypoxia through modulating Akt signal. Biochemical and Biophysical Research Communications, 470(3), 670–677.
- Sugatani, T., & Hruska, K. A. (2013). Down-regulation of miR-21 biogenesis by estrogen action contributes to osteoclastic apoptosis. Journal of Cellular Biochemistry, 114(6), 1217–1222.
- Sun, J., Wang, Y., Li, Y., & Zhao, G. (2014). Downregulation of PPARgamma by miR-548d-5p suppresses the adipogenic differentiation of human bone marrow mesenchymal stem cells and enhances their osteogenic potential. Journal of Translational Medicine, 12, 168.
- Sun, K. T., Chen, M. Y. C., Tu, M. G., Wang, I. K., Chang, S. S., & Li, C. Y. (2015). MicroRNA-20a regulates autophagy related protein-ATG16L1 in hypoxia-induced osteoclast differentiation. Bone, 73, 145–153.
- Sun, Z., Cao, X., Hu, Z., Zhang, L., Wang, H., Zhou, H., … Xie, M. (2015). MiR-103 inhibits osteoblast proliferation mainly through suppressing Cav1.2 expression in simulated microgravity. Bone, 76, 121–128.
- Suomi, S., Taipaleenmäki, H., Seppänen, A., Ripatti, T., Väänänen, K., Hentunen, T., … Laitala-Leinonen, T. (2008). MicroRNAs regulate osteogenesis and chondrogenesis of mouse bone marrow stromal cells. Gene Regulation and Systems Biology, 2, 177–191.
- Søe, K., Hobolt-Pedersen, A. S., & Delaisse, J. M. (2015). The elementary fusion modalities of osteoclasts. Bone, 73, 181–189.
- Tan, M., Mu, X., Liu, Z., Tao, L., Wang, J., Ge, J., & Qiu, J. (2017). MicroRNA-495 promotes bladder cancer cell growth and invasion by targeting phosphatase and tensin homolog. Biochemical and Biophysical Research Communications, 483(2), 867–873.
- Tang, X., Lin, J., Wang, G., & Lu, J. (2017). MicroRNA-433-3p promotes osteoblast differentiation through targeting DKK1 expression. PLoS One, 12(6), e179860.
- Tian, Y., Guo, R., Shi, B., Chen, L., Yang, L., & Fu, Q. (2016). MicroRNA-30a promotes chondrogenic differentiation of mesenchymal stem cells through inhibiting delta-like 4 expression. Life Sciences, 148, 220–228.
- Tian, Z., Zhou, H., Xu, Y., & Bai, J. (2017). MicroRNA-495 inhibits new bone regeneration via targeting high mobility group AT-hook 2 (HMGA2). Medical Science Monitor, 23, 4689–4698.
- Tomé, M., López-Romero, P., Albo, C., Sepúlveda, J. C., Fernández-Gutiérrez, B., Dopazo, A., … González, M. A. (2011). MiR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death and Differentiation, 18(6), 985–995.
- Trohatou, O., Zagoura, D., Bitsika, V., Pappa, K. I., Antsaklis, A., Anagnou, N. P., & Roubelakis, M. G. (2014). Sox2 suppression by miR-21 governs human mesenchymal stem cell properties. Stem Cells Translational Medicine, 3(1), 54–68.
- Trohatou, O., Zagoura, D., Orfanos, N. K., Pappa, K. I., Marinos, E., Anagnou, N. P., & Roubelakis, M. G. (2017). MiR-26a mediates adipogenesis of amniotic fluid mesenchymal stem/stromal cells via PTEN, cyclin E1, and CDK6. Stem Cells and Development, 26(7), 482–494.
- Wa, Q., Liu, Y., Huang, S., He, P., Zuo, J., Li, X., … Liao, W. (2017). miRNA-140 inhibits C3H10T1/2 mesenchymal stem cell proliferation by targeting CXCL12 during transforming growth factor-beta3-induced chondrogenic differentiation. Molecular Medicine Reports, 16(2), 1389–1394.
- Wang, J., Huang, W., Wu, Y., Hou, J., Nie, Y., Gu, H., … Zhang, H. (2012). MicroRNA-193 pro-proliferation effects for bone mesenchymal stem cells after low-level laser irradiation treatment through inhibitor of growth family, member 5. Stem Cells and Development, 21(13), 2508–2519.
- Wang, T., Yan, R. Q., Cao, J., Cao, L. L., Zhang, X. P., Li, X. N., … Xu, X. Y. (2016). Expression of miR-140-5p and prediction of its target gene in human mesenchymal stem cells during adipogenic differentiation. Journal of Southern Medical University, 37(2), 199–203.
- Wang, X. P., Yao, J., Guan, J., Zhou, Z. Q., Zhang, Z. Y., & Yang, J. (2018). MicroRNA-542-3p functions as a tumor suppressor via directly targeting survivin in hepatocellular carcinoma. Biomedicine and Pharmacotherapy, 99, 817–824.
- Wang, Y., Li, L., Moore, B. T., Peng, X. H., Fang, X., Lappe, J. M., … Xiao, P. (2012). MiR-133a in human circulating monocytes: A potential biomarker associated with postmenopausal osteoporosis. PLoS One, 7(4), e34641.
- Weilner, S., Skalicky, S., Salzer, B., Keider, V., Wagner, M., Hildner, F., … Hackl, M. (2015). Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone, 79, 43–51.
- Xia, X., Kar, R., Gluhak-Heinrich, J., Yao, W., Lane, N. E., Bonewald, L. F., … Jiang, J. X. (2010). Glucocorticoid-induced autophagy in osteocytes. Journal of Bone and Mineral Research, 25(11), 2479–2488.
- Xie, L., Chen, Z., Liu, H., Guan, L., Wang, Z., & Li, W. (2018). Effects of miR-340 on hepatocellular carcinoma by targeting the DcR3 gene. Digestive and Liver Disease, 50(3), 291–296.
- Xie, W. B., Liang, L. H., Wu, K. G., Wang, L. X., He, X., Song, C., … Li, Y. H. (2018). MiR-140 expression regulates cell proliferation and targets PD-L1 in NSCLC. Cellular Physiology and Biochemistry, 46(2), 654–663.
- Xu, H., Liu, X., Zhou, J., Chen, X., & Zhao, J. (2016). miR-574-3p acts as a tumor promoter in osteosarcoma by targeting SMAD4 signaling pathway. Oncology Letters, 12(6), 5247–5253.
- Yang, Y., Jiang, Z., Ma, N., Wang, B., Liu, J., Zhang, L., & Gu, L. (2018). MicroRNA-223 targeting STIM1 inhibits the biological behavior of breast cancer. Cellular Physiology and Biochemistry, 45(2), 856–866.
- Yao, Y., Jia, T., Pan, Y., Gou, H., Li, Y., Sun, Y., … Wang, L. (2015). Using a novel microRNA delivery system to inhibit osteoclastogenesis. International Journal of Molecular Sciences, 16(4), 8337–8350.
- You, L., Pan, L., Chen, L., Gu, W., & Chen, J. (2016). MiR-27a is essential for the shift from osteogenic differentiation to adipogenic differentiation of mesenchymal stem cells in postmenopausal osteoporosis. Cellular Physiology and Biochemistry, 39(1), 253–265.
- Zeng, H. C., Bae, Y., Dawson, B. C., Chen, Y., Bertin, T., Munivez, E., … Lee, B. H. (2017). MicroRNA miR-23a cluster promotes osteocyte differentiation by regulating TGF-beta signalling in osteoblasts. Nature Communications, 8, 15000.
- Zhang, F., Cui, J., Liu, X., Lv, B., Liu, X., Xie, Z., & Yu, B. (2015). Roles of microRNA-34a targeting SIRT1 in mesenchymal stem cells. Stem Cell Research & Therapy, 6, 195.
- Zhang, J., Zhao, H., Chen, J., Xia, B., Jin, Y., Wei, W., … Huang, Y. (2012). Interferon-beta-induced miR-155 inhibits osteoclast differentiation by targeting SOCS1 and MITF. FEBS Letters, 586(19), 3255–3262.
- Zhang, Y., Gao, Y., Cai, L., Li, F., Lou, Y., Xu, N., … Yang, H. (2017). MicroRNA-221 is involved in the regulation of osteoporosis through regulates RUNX2 protein expression and osteoblast differentiation. American Journal of Translational Research, 9(1), 126–135.
- Zhang, Y., Huang, X., & Yuan, Y. (2017). MicroRNA-410 promotes chondrogenic differentiation of human bone marrow mesenchymal stem cells through down-regulating Wnt3a. American Journal of Translational Research, 9(1), 136–145.
- Zhao, C., Sun, W., Zhang, P., Ling, S., Li, Y., Zhao, D., … Li, Y. (2015). miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biology, 12(3), 343–353.
- Zhao, H., Zhang, J., Shao, H., Liu, J., Jin, M., Chen, J., & Huang, Y. (2017). miRNA-340 inhibits osteoclast differentiation via repression of MITF. Bioscience Reports, 37(4), BSR20170302.
- Zheng, J., Liu, Y., Qiao, Y., Zhang, L., & Lu, S. (2017). miR-103 promotes proliferation and metastasis by targeting KLF4 in gastric cancer. International Journal of Molecular Sciences, 18(5), 910.
- Zhou, M., Ma, J., Chen, S., Chen, X., & Yu, X. (2014). MicroRNA-17-92 cluster regulates osteoblast proliferation and differentiation. Endocrine, 45(2), 302–310.
- Zhu, K., Liu, L., Zhang, J., Wang, Y., Liang, H., Fan, G., … Zhou, G. (2016). MiR-29b suppresses the proliferation and migration of osteosarcoma cells by targeting CDK6. Protein & Cell, 7(6), 434–444.