Heavy metal-free electrochemical detection of pyrophosphate ions by Nafion/carbon dots decorated screen printed carbon electrodes
Che-Wei Chang
Department of Chemistry, National Taiwan University, Taipei, Taiwan
Search for more papers by this authorCorresponding Author
Wei-Ssu Liao
Department of Chemistry, National Taiwan University, Taipei, Taiwan
Correspondence
Wei-Ssu Liao, Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
Email: [email protected]
Search for more papers by this authorChe-Wei Chang
Department of Chemistry, National Taiwan University, Taipei, Taiwan
Search for more papers by this authorCorresponding Author
Wei-Ssu Liao
Department of Chemistry, National Taiwan University, Taipei, Taiwan
Correspondence
Wei-Ssu Liao, Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
Email: [email protected]
Search for more papers by this authorAbstract
We employ Nafion-mixed carbon dots (CDs) and low-cost screen-printed carbon electrodes (SPCEs) as foundation matrices for the fabrication of electrochemical biosensors. The NH2 and COOH functional groups present on the SPCE surface after Nafion/CDs deposition allow for pyrophosphate ions (PPis) collection. Using Fe(CN)63− as the electrochemical mediator, the SPCE-Nafion/CDs are applied to the detection of aqueous PPi by square wave voltammetry. Between 50 and 1 μM, a linear connection is established between the square wave voltammetry current and the PPi concentration. The limit of detection is determined to be 1.01 μM, and recoveries of 113% (±1.9%) and 108% (±3.9%) are achieved for human urine samples spiked with 6 and 3 μM of PPi, respectively. Furthermore, this PPi assay is suitable for the usage of complicated urine matrices without the inclusion of heavy metals. We anticipate that this unique approach will be beneficial for PPi level monitoring in urine during therapeutic treatments of illnesses and malignancies.
CONFLICT OF INTEREST
There are no conflicts to declare.
REFERENCES
- 1S. G. Roy, S. Mondal, K. Ghosh, Anal. Methods 2020, 12(47), 5699.
- 2S.-Y. Jiao, K. Li, W. Zhang, Y.-H. Liu, Z. Huang, X.-Q. Yu, Dalton Trans. 2015, 44(3), 1358.
- 3H. Li, J. Ren, X. Xu, L. Ning, R. Tong, Y. Song, S. Liao, W. Gu, X. Liu, Analyst 2019, 144(15), 4513.
- 4K. A. Jolliffe, Acc. Chem. Res. 2017, 50(9), 2254.
- 5S. Xu, M. He, H. Yu, X. Cai, X. Tan, B. Lu, B. Shu, Anal. Biochem. 2001, 299(2), 188.
- 6M. Ronaghi, S. Karamohamed, B. Pettersson, M. Uhlén, P. Nyrén, Anal. Biochem. 1996, 242(1), 84.
- 7P. Nyren, B. Pettersson, M. Uhlen, Anal. Biochem. 1993, 208(1), 171.
- 8J. Deng, P. Yu, L. Yang, L. Mao, Anal. Chem. 2013, 85(4), 2516.
- 9N. K. Beyeh, I. Díez, S. M. Taimoory, D. Meister, A. I. Feig, J. F. Trant, R. H. A. Ras, K. Rissanen, Chem. Sci. 2018, 9(5), 1358.
- 10X. Xu, X. Zou, S. Wu, L. Wang, X. Niu, X. Li, J. Pan, H. Zhao, M. Lan, Anal. Chim. Acta 2019, 1053, 89.
- 11B. Tharmalingam, M. Mathivanan, K. S. Mani, W. Kaminsky, A. Raghunath, M. Jothi, E. Perumal, B. Murugesapandian, Anal. Chim. Acta 2020, 1103, 192.
- 12S. Kiran, R. Khatik, R. Schirhagl, Anal. Bioanal. Chem. 2019, 411(24), 6475.
- 13J. H. Kang, J. Han, H. Lee, M. H. Lim, K.-T. Kim, C. Kim, Dyes Pigm. 2018, 152, 131.
- 14A. E. Timms, Y. Zhang, R. G. G. Russell, M. A. Brown, Rheumatology 2002, 41(7), 725.
- 15A. M. Caswell, M. P. Whyte, R. G. G. Russell, Crit. Rev. Clin. Lab. Sci. 1991, 28(3), 175.
- 16S. A. Smith, S. H. Choi, R. Davis-Harrison, J. Huyck, J. Boettcher, C. M. Rienstra, J. H. Morrissey, Blood 2010, 116(20), 4353.
- 17C.-Y. Chen, Y. Z. Tan, P.-H. Hsieh, C.-M. Wang, H. Shibata, K. Maejima, T.-Y. Wang, Y. Hiruta, D. Citterio, W.-S. Liao, ACS Sens. 2020, 5(5), 1314.
- 18A. Shiba, E. Kinoshita-Kikuta, E. Kinoshita, T. Koike, Sensors 2017, 17, 1877.
- 19M. Guo, P. Dong, Y. Feng, X. Xi, R. Shao, X. Tian, B. Zhang, M. Zhu, X. Meng, Biosens. Bioelectron. 2017, 90, 276.
- 20M. Li, J. Li, H. Di, H. Liu, D. Liu, Anal. Chem. 2017, 89(6), 3532.
- 21D.-E. Wang, X. Gao, G. Li, T. Xue, H. Yang, H. Xu, Sens. Actuators, B 2019, 289, 85.
- 22Z. Lin, S. Luo, D. Xu, S. Liu, N. Wu, W. Yao, X. Zhang, L. Zheng, X. Lin, Analyst 2020, 145(2), 424.
- 23H. Wang, H. Rao, X. Xue, P. An, M. Gao, M. Luo, X. Liu, Z. Xue, Anal. Chim. Acta 2020, 1097, 222.
- 24F. Li, Y. Liu, Z. Li, Q. Li, X. Liu, H. Cui, ACS Appl. Mater. Interfaces 2020, 12(2), 2903.
- 25X. Peng, J. Zheng, T. Bao, W. Wen, X. Zhang, S. Wang, Sens. Actuators B 2019, 291, 451.
- 26R. Villamil-Ramos, P. Gómez-Tagle, J. C. Aguilar-Cordero, A. K. Yatsimirsky, Anal. Chim. Acta 2019, 1057, 51.
- 27F. Qi, Y. Han, Z. Ye, H. Liu, L. Wei, L. Xiao, Anal. Chem. 2018, 90(18), 11146.
- 28S. K. Asthana, A. Kumar, S. K. Hira, P. P. Manna, K. K. Upadhyay, Inorg. Chem. 2017, 56(6), 3315.
- 29M. Hosseini, M. R. Ganjali, M. Tavakoli, P. Norouzi, F. Faridbod, H. Goldooz, A. Badiei, J. Fluoresc. 2011, 21(4), 1509.
- 30W. Xia, P. Zhang, W. Fu, L. Hu, Y. Wang, Chem. Commun. 2019, 55(14), 2039.
- 31Y. Xu, X. Liu, J. Zhao, H. Wang, Z. Liu, X. Yang, M. Pei, G. Zhang, New J. Chem 2019, 43(1), 474.
- 32T.-H. Chen, W.-L. Tseng, Anal. Chem. 2017, 89(21), 11348.
- 33T. J. Greenfield, M. M. Turnbull, J. Zubieta, R. P. Doyle, Inorg. Chim. Acta 2019, 498, 119084.
- 34L. J. Chai, J. Zhou, H. Feng, J. J. Lin, Z. S. Qian, Sens. Actuators, B 2015, 220, 138.
- 35X. Wang, Z. Zhang, X. Ma, J. Wen, Z. Geng, Z. Wang, Talanta 2015, 137, 156.
- 36Q. Wang, S. Zhang, H. Ge, G. Tian, N. Cao, Y. Li, Sens. Actuators B 2015, 207, 25.
- 37Y. Liu, Q. Zhou, Y. Yuan, Y. Wu, Carbon 2017, 115, 550.
- 38Y. Bao, H. Wang, Q. Li, B. Liu, Q. Li, W. Bai, B. Jin, R. Bai, Macromolecules 2012, 45(8), 3394.
- 39A. H. Malik, S. Hussain, A. S. Tanwar, S. Layek, V. Trivedi, P. K. Iyer, Analyst 2015, 140(13), 4388.
- 40Y. Shi, J. Wang, K. Mu, S. Liu, G. Yang, M. Zhang, J. Yang, Sensors 2021, 21(16), 5538.
- 41R. Arumugaperumal, V. Srinivasadesikan, M.-C. Lin, M. Shellaiah, T. Shukla, H.-C. Lin, RSC Adv. 2016, 6(108), 106631.
- 42L. Wang, Q. Song, Q. Liu, D. He, J. Ouyang, Adv. Funct. Mater. 2015, 25(45), 7017.
- 43X. Feng, Y. An, Z. Yao, C. Li, G. Shi, ACS Appl. Mater. Interfaces 2012, 4(2), 614.
- 44P. Pang, F. Yan, H. Li, H. Li, Y. Zhang, H. Wang, Z. Wu, W. Yang, Anal. Methods 2016, 8(24), 4912.
- 45Y. H. Huang, J. H. Chen, X. Sun, Z. B. Su, S. R. Hu, W. Weng, Y. Huang, W. B. Wu, Y. S. He, RSC Adv. 2015, 5(100), 82623.
- 46T.-Y. Wang, C.-Y. Chen, C.-M. Wang, Y. Z. Tan, W.-S. Liao, ACS Sens. 2017, 2(3), 354.
- 47S. C. Wang, K. S. Chang, C. J. Yuan, Electrochim. Acta 2009, 54(21), 4937.
- 48X. Yuan, L. Ma, J. Zhang, Y. Zheng, Appl. Surf. Sci. 2021, 544, 148760.
- 49A. J. Bard, L. R. Faulkner, H. S. White, Electrochemical methods: Fundamentals and applications, John Wiley & Sons, New York 2022.
- 50T. Ayabe, A. Chen, T. Sagara, J. Electroanal. Chem. 2020, 873, 114442.
- 51P.-Y. Chen, R. Vittal, P.-C. Nien, K.-C. Ho, Biosens. Bioelectron. 2009, 24(12), 3504.
- 52H.-S. Jang, D. Kim, C. Lee, B. Yan, X. Qin, Y. Piao, Inorg. Chem. Commun. 2019, 105, 174.
- 53W. M. K. W. M. Ikhmal, M. Y. N. Yasmin, M. F. M. Fazira, W. A. W. Rafizah, W. B. Wan Nik, M. G. M. Sabri, IOP Conf. Ser. Mater. Sci. Eng. 2018, 344(1), 012028.
10.1088/1757-899X/344/1/012028 Google Scholar
- 54C. Korzeniewski, Y. Liang, P. Zhang, I. Sharif, J. P. Kitt, J. M. Harris, S. J. Hamrock, S. E. Creager, D. D. DesMarteau, Appl. Spectrosc. 2017, 72(1), 141.
- 55Y. Lin, L. Hu, L. Li, K. Wang, Y. Ji, H. Zou, Microchim. Acta 2015, 182(11), 2069.
- 56F. Wang, C. Zhang, Q. Xue, H. Li, Y. Xian, Biosens. Bioelectron. 2017, 95, 21.
- 57N. Shao, H. Wang, X. Gao, R. Yang, W. Chan, Anal. Chem. 2010, 82(11), 4628.