Fabrication of a visible-light-driven p-type NiWO4/n-type SnO2 heterojunction with efficient photocatalytic activity for degradation of Amaranth
Eswaran Kamaraj
Department of Chemistry, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
Search for more papers by this authorCorresponding Author
Yong Rok Lee
School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
Correspondence
Yong Rok Lee, School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Email: [email protected]
Kavitha Balasubramani, Department of Chemistry, Cardamom Planters' Association College, Bodinayakanur 625513, Tamil Nadu, India.
Email: [email protected].
Search for more papers by this authorCorresponding Author
Kavitha Balasubramani
Department of Chemistry, Cardamom Planters' Association College, Bodinayakanur, India
Correspondence
Yong Rok Lee, School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Email: [email protected]
Kavitha Balasubramani, Department of Chemistry, Cardamom Planters' Association College, Bodinayakanur 625513, Tamil Nadu, India.
Email: [email protected].
Search for more papers by this authorEswaran Kamaraj
Department of Chemistry, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
Search for more papers by this authorCorresponding Author
Yong Rok Lee
School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
Correspondence
Yong Rok Lee, School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Email: [email protected]
Kavitha Balasubramani, Department of Chemistry, Cardamom Planters' Association College, Bodinayakanur 625513, Tamil Nadu, India.
Email: [email protected].
Search for more papers by this authorCorresponding Author
Kavitha Balasubramani
Department of Chemistry, Cardamom Planters' Association College, Bodinayakanur, India
Correspondence
Yong Rok Lee, School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Email: [email protected]
Kavitha Balasubramani, Department of Chemistry, Cardamom Planters' Association College, Bodinayakanur 625513, Tamil Nadu, India.
Email: [email protected].
Search for more papers by this authorFunding information: University Grants Commission - India, Grant/Award Number: UGC-F.No-MRP-6006/15 (SERO)
Abstract
In this study, n-type SnO2 was synthesized and modified with p-type NiWO4 to create a new NiWO4/SnO2 p–n heterojunction photocatalyst for effective organic dye degradation (Amaranth). X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis diffuse reflection spectroscopy (DRS), and Brunauer–Emmett–Teller (BET) surface area analysis were all used to evaluate the synthesized materials. Through its internal electric field and strong driving force, the composite photocatalyst with p–n heterojunction considerably enhances charge generation and suppresses photogenerated electron–hole recombination, which would be beneficial to boost their photocatalytic performance. At 180 min, the NiWO4/SnO2 photocatalyst had the maximum efficiency for degrading Amaranth, up to 93%. Finally, the experimental results were used to rationally analyze the photodegradation mechanism.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
jccs202200009-sup-0001-Figures.docxWord 2007 document , 80.3 KB | Appendix S1. Supporting information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1N. M. Mahmoodi, N. Y. Limaee, M. Arami, S. Borhany, M. Mohammad-Taheri, J. Photochem. Photobiol. A Chem. 2007, 189, 1.
- 2P. Kaur, V. K. Sangal, J. P. Kushwaha, RSC Adv. 2015, 5, 34663.
- 3A. Garg, V. K. Sangal, P. K. Bajpai, Desalin. Water Treat. 2016, 57, 18003.
- 4V. K. Gupta, D. Pathania, S. Agarwal, S. Sharma, J. Mol. Liq. 2012, 174, 86.
- 5S. T. Fardood, F. Moradnia, R. Forootan, R. Abbassi, S. Jalalifar, A. Ramazani, M. Sillanpa, J. Photochem. Photobiol. A Chem. 2022, 423, 113621.
- 6F. Moradnia, S. T. Fardood, A. Ramazani, S. Osali, I. Abdolmaleki, Micro Nano Lett. 2020, 15, 674.
- 7F. Moradnia, S. T. Fardood, A. Ramazani, B. Sang, W. J. Rajender, S. Varma, J. Clean. Prod. 2021, 288, 125632.
- 8A. Akhundi, A. Badiei, G. M. Ziarani, A. H. Yangjeh, M. J. M. Batista, R. Luque, Mol. Catal. 2020, 488, 110902.
- 9A. H. Yangjeh, S. A. Khaneghah, S. Feizpoor, A. Rouhi, J. Colloid Interface Sci. 2020, 580, 503.
- 10S. A. Khaneghah, A. H. Yangjeh, J. Clean. Prod. 2020, 276, 124319.
- 11P. Z. Araujo, V. Luca, P. B. Bozzano, H. L. Bianchi, G. J. d. Á. A. Soler-Illia, M. A. Blesa, ACS Appl. Mater. Interfaces 2010, 2, 1663.
- 12Y. Feng, L. Li, M. Ge, C. Guo, J. Wang, L. Liu, ACS Appl. Mater. Interfaces 2010, 2, 3134.
- 13X. Lü, F. Huang, J. Wu, S. Ding, F. Xu, ACS Appl. Mater. Interfaces 2011, 3, 566.
- 14C. Y. Chu, M. H. Huang, J. Mater. Chem. A 2017, 5, 15116.
- 15S. Rehman, R. Ullah, A. M. Butt, N. D. Gohar, J. Hazard. Mater. 2009, 170, 560.
- 16K. H. Hu, Z. Liu, F. Huang, X. G. Hu, C. L. Han, Chem. Eng. J. 2010, 162, 836.
- 17Y. C. Zhang, Z. N. Du, K. W. Li, M. Zhang, D. D. Dionysiou, ACS Appl. Mater. Interfaces 2011, 3, 1528.
- 18Y. Li, J.-G. Wang, W. Hua, H. Liu, B. Wei, J. Mater. Chem. A 2019, 7, 16883.
- 19X. Deng, H. Zhang, R. Guo, X. Cheng, Q. Cheng, Appl. Surf. Sci. 2018, 441, 420.
- 20M. A. Ahmed, M. F. A. Messih, E. F. El-Sherbeny, S. F. El-Hafez, A. M. M. Khalifa, J. Photochem. Photobiol. A Chem. 2017, 346, 77.
- 21N. Talinungsang, D. D. Paul, M. G. Purkayastha, Krishna, Superlattice. Microst. 2019, 129, 105.
- 22K. A. Adegoke, M. Iqbal, H. Louis, O. S. Bello, Mater. Sci. Energy Technol. 2019, 2, 329.
10.1016/j.mset.2019.02.008 Google Scholar
- 23M. Batzill, U. Diebold, Prog. Surf. Sci. 2005, 79, 47.
- 24M. Ge, C. Cao, S. Li, S. Zhang, S. Deng, J. Huang, Q. Li, K. Zhang, S. S. Al-Deyab, Y. Lai, Nanoscale 2015, 7, 11552.
- 25Z. He, Y. Shi, C. Gao, L. Wen, J. Chen, S. Song, J. Phys. Chem. C 2014, 118, 389.
- 26C. Wang, C. Shao, X. Zhang, Y. Liu, Inorg. Chem. 2009, 48, 7261.
- 27S. P. Kim, M. Y. Choi, H. C. Choi, Mater. Res. Bull. 2016, 74, 85.
- 28Z. Wen, G. Wang, W. Lu, Q. Wang, Q. Zhang, J. Li, Cryst. Growth Des. 2007, 7, 1722.
- 29J. Zheng, L. Zhang, Appl. Catal. B Environ. 2018, 231, 34.
- 30H. Xia, H. Zhuang, T. Zhang, D. Xiao, Mater. Lett. 2008, 62, 1126.
- 31S. Selvarajan, P. Malathy, A. Suganthi, M. Rajarajan, J. Ind. Eng. Chem. 2017, 53, 201.
- 32H. Cao, S. Huang, Y. Yu, Y. Yan, Y. Lv, Y. Cao, J. Colloid Interface Sci. 2017, 486, 176.
- 33X. Wang, P. Ren, Adv. Powder Technol. 2018, 29, 1153.
- 34D. Li, J. Huang, R. Li, P. Chen, D. Chen, M. Cai, H. Liu, Y. Feng, W. Lv, G. Liu, J. Hazard. Mater. 2021, 401, 123257.
- 35(a) S. Huang, J. Zhang, Y. Qin, F. Song, C. Du, Y. Su, J. Photochem. Photobiol. A Chem. 2021, 404, 112947. (b) L. Guo, N. Okinaka, L. Zhang, S. Watanabe, Mater. Chem. Phys. 2021, 262, 124273.
- 36X. Xu, L. Pei, Y. Yang, J. Shen, M. Ye, J. Alloys Compd. 2016, 654, 23.
- 37U. Nithiyanantham, S. R. Ede, S. Anantharaj, S. Kundu, Cryst. Growth Des. 2015, 15, 673.
- 38D. Gubán, I. Borbáth, Z. Pászti, I. Sajó, E. Drotár, M. Hegedűs, A. Tompos, Appl. Catal. B Environ. 2015, 455, 174.
- 39V. K. V. P. Srirapu, A. Kumar, P. Srivastava, R. N. Singh, A. S. K. Sinha, Electrochim. Acta 2016, 209, 75.
- 40E. Antolini, E. R. Gonzalez, Appl. Catal. B Environ. 2010, 96, 245.
- 41R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, Mater. Sci. Semicond. Process. 2015, 40, 123.
- 42U. M. García-Pérez, A. M. De La Cruz, J. Peral, Electrochim. Acta 2012, 81, 227.
- 43Y. Keereeta, S. Thongtem, T. Thongtem, Powder Technol. 2015, 284, 85.
- 44T. Montini, V. Gombac, A. Hameed, L. Felisari, G. Adami, P. Fornasiero, Chem. Phys. Lett. 2010, 498, 113.
- 45M. Pirhashemi, A. Habibi-Yangjeh, Sep. Purif. Technol. 2018, 193, 69.
- 46L. Cojocaru, C. Olivier, T. Toupance, E. Sellier, L. Hirsch, J. Mater. Chem. A 2013, 1, 13789.
- 47J. M. Quintana-Melgoza, A. Gómez-cortés, M. Avalos-Borja, React. Kinet. Catal. Lett. 2002, 76, 131.
- 48S. V. Green, C. G. Granqvist, G. A. Niklasson, Sol. Energy Mater. Sol. Cells 2014, 126, 248.
- 49D. Qi, M. Xing, J. Zhang, J. Phys. Chem. C 2014, 118, 7329.
- 50S. V. Green, A. Kuzmin, J. Purans, C. G. Granqvist, G. A. Niklasson, Thin Solid Films 2011, 519, 2062.
- 51P. Bansal, D. Sud, Desalination 2011, 267, 244.
- 52P. S. Sathish Kumar, R. Sivakumar, S. Anandan, J. Madhavan, P. Maruthamuthu, M. Ashokkumar, Water Res. 2008, 42, 4878.
- 53R. Velmurugan, M. Swaminathan, Sol. Energy Mater. Sol. Cells 2011, 95, 942.
- 54W. Zhao, Z. Bai, A. Ren, B. Guo, C. Wu, Appl. Surf. Sci. 2010, 256, 3493.
- 55R. Y. Hong, J. H. Li, L. L. Chen, D. Q. Liu, Y. Zheng, Powder Technol. 2009, 189, 426.
- 56E. I. Rabea, M. E.-T. Badawy, C. V. Stevens, G. Smagghe, W. Steurbaut, Biomacromolecules 2003, 4, 1457.
- 57H. Xu, H. Li, C. Wu, J. Chu, Y. Yan, H. Shu, Z. Gu, J. Hazard. Mater. 2008, 153, 877.
- 58G. Naresh, P. L. Hsieh, V. Meena, S. K. Lee, Y. H. Chiu, M. Madasu, A. T. Lee, H. Y. Tsai, T. H. Lai, Y. J. Hsu, Y. C. Lo, M. H. Huang, ACS Appl. Mater. Interfaces 2019, 11, 3582.
- 59S. C. Wu, C. S. Tan, M. H. Huang, Adv. Funct. Mater. 2017, 27, 1604635.
- 60R. Arunadevi, B. Kavitha, M. Rajarajan, A. Suganthi, J. Environ. Chem. Eng. 2018, 6, 3349.
- 61N. Srivastava, M. Mukhopadhyay, Ind. Eng. Chem. Res. 2014, 53, 13971.
- 62J. Ebrahimian, M. Mohsennia, M. Khayatkashani, Mater. Lett. 2020, 263, 127255.
- 63M. Honarmand, M. Golmohammadi, A. Naeimi, Adv. Powder Technol. 2019, 30, 1551.
- 64T. T. Bhosale, A. R. Kuldeep, S. J. Pawar, J. Mater. Sci. Mater. Electron. 2019, 30, 18927.
- 65S. E. G. D. Rani, A. G. Kumar, S. Steplinpaulselvin, R. Rajaram, A. S. Silambarasan, I. S. Lydia, Y. Chen, Sci. Total Environ. 2020, 721, 137805.