Anharmonic Effect of the Unimolecular Dissociation of HFCO and DFCO
Corresponding Author
Li Yao
Dalian Maritime University, Dalian 116026, China
Dalian Maritime University, Dalian 116026, ChinaSearch for more papers by this authorS. H. Lin
Department of Applied Chemistry, National Chiao-Tung University, Hsin-chu, Taiwan, 10764
Search for more papers by this authorCorresponding Author
Li Yao
Dalian Maritime University, Dalian 116026, China
Dalian Maritime University, Dalian 116026, ChinaSearch for more papers by this authorS. H. Lin
Department of Applied Chemistry, National Chiao-Tung University, Hsin-chu, Taiwan, 10764
Search for more papers by this authorAbstract
The unimolecular reactions of HFCO and DFCO have been studied by RRKM theory. The harmonic and anharmonic rate constants of the HFCO and DFCO decompositions have been calculated. The harmonic and anharmonic rate constants increase with the increasing temperatures and total energies both in the canonical and microcanonical systems. The comparison shows that the rate constants of DFCO decomposition are lower than that of the HFCO decomposition. The anharmonic effect and isotope effect have also been investigated. It has been found that the anharmonic effect and isotope effect are not significant either in the canonical or microcanonical system for all the reactions.
References
- 1aMoore, C. B.; Weisshaar, J. C. Ann. Rev. Phys. Chern. 1983, 34, 525;
- 1bChuang, M.-C.; Foltz, M. F.; Moore, C. B. J. Chern. Phys. 1987, 87, 3855 and references therein.;
- 1cScuseriaand, G. E.; Schaefer, H. F. IBID 1989, 90, 3629 and references therein.
- 2Saito, K.; Kuroda, H.; Kakurnoto, T.; Munechika, H.; Murakami, I. Chern. Phys. Lett. 1985, 113, 399.
- 3Weiner, B. R.; Rosenfeld, R. N. J. Phys. Chern. 1988, 92, 4640.
- 4aSloan, J. J. J. Phys. Chern. 1988, 92, 18;
- 4bDonaldson, D. J.; Sloan, J. J. J. Chern. Phys. 1985, 82, 1873.
- 5aChoi, Y. S.; Moore, C. B. J. Chern. Phys. 1989, 90, 3875 IBID, In press;
- 5bChoi, Y. S.; Teal, P.; Moore, C. B. J. Opt. Soc. Am. B 1990, 7, 1829;
- 5cMoore, C. B.; Zheng, Q.-K.; Choi, Y. S.; Green, W. H.; Kim, S. K.; Mahoney, A. J.; Miller, W. H.; Pibel, C. D.; Polik, W. F.; Teal, P. Philos. Trans. R. Soc. London Ser. A 1990, 332, 297.
- 6Sülzle, D.; Drewello, T.; van Baar, B. L. M.; Schwarz, H. J. Am. Chern. Soc. 1988, 110, 8330.
- 7Klimek, D. E.; Berry, M. J. Chern. Phys. Lett. 1973, 20, 141.
- 8Morokurna, K.; Kato, S.; Hirao, K. J. Chern. Phys. 1980, 72, 6800.
- 9Morokurna, K.; Kato, S. In Potential Energy Surfaces and Dynamics Calculations; Truhlar, D. G., Ed.
- 10Bachler, V.; Halevi, E. A.; Polansky, O. E. Theoret. Chirn. Acta 1984, 65, 81.
- 11Goddard, J. D.; Schaefer, H. F. J. Chern. Phys. 1990, 93, 4907.
- 12Green, W. H.; Jayatilaka, D.; Willetts, A.; Amos, R. D.; Handy, N. C. J. Chern. Phys. 1990, 93, 4965.
- 13aMcDowwell, S. A. C. J. Mol. Struct. Theomchem. 2006, 770, 119;
- 13bBhuiyan, L. B.; Hase, W. L. J. Chem. Phys. 1983, 78, 5052;
- 13cPeslherbe, G. H.; Hase, W. L. J. Chem. Phys. 1996, 105, 7432.
- 14Schlag, E. W.; Sandsmark, R. A. J. Chem. Phys. 1962, 37, 168.
- 15Haarhoff, P. C. Mol. Phys. 1964, 7, 101.
- 16aKrems, R.; Nordholm, S. Z. Phys. Chem. 2000, 214, 1467;
- 16bShen, D.; Pritchard, H. O. J. Chem. Soc. Faraday Trans. 1996, 92, 1297.
- 17Peslherbe, G. H.; Hase, W. L. J. Chem. Phys. 1996, 105, 7432.
- 18Mitra, S. S.; Bhattacharyya, S. S. J. Phys. B: At., Mol. Opt. Phys. 1994, 27, 1773.
- 19Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253.
- 20Song, K.; Hase, W. L. J. Chem. Phys. 1999, 110, 6198.
- 21Hase, W. L. Acc. Chem. Res. 1998, 31, 659.
- 22Bagratashvilli, V. N.; Letokhov, V. S.; Makarov, A. A.; Ryabov, E. A. Laser. Chem. 1983, 1, 211.
10.1155/LC.1.211 Google Scholar
- 23Mitra, S. S.; Bhattacharyya, S. S. J. Phys. B: At., Mol. Opt. Phys. 1994, 27, 1773.
- 24aTroe, J. J. Chem. Phys. 1977, 66, 4758;
- 24bTroe, J. Chem. Phys. 1995, 190, 381;
- 24cTroe, J. J. Phys. Chem. 1979, 83, 114;
- 24dTroe, J. J. Chem. Phys. 1983, 79, 6017;
- 24eRomanini, D.; Lehmann, K. K. J. Chem. Phys. 1993, 98, 6437.
- 25aYao, L.; Mebel, A. M.; Lu, H. F.; Neusser, H. J.; Lin, S. H. J. Phys. Chem. A 2007, 111, 6722;
- 25bYao, L.; Lin, S. H. Mod. Phys. Lett. B 2008, 22, 3043;
- 25cYao, L.; Lin, S. H. Sci. Chin. Ser. B 2008, 51, 1146;
- 25dYao, L.; He, R. X.; Mebel, A. M.; Lin, S. H. Chem. Phys. Lett. 2009, 470, 210;
- 25eShao, Y.; Yao, L.; Lin, S. H. Chem. Phys. Lett. 2009, 478, 277;
- 25fYao, L.; Mebel, A. M.; Lin, S. H. J. Phys. Chem. A 2009, 113, 14664;
- 25gShao, Y.; Yao, L.; Mao, Y. C.; Zhong, J. J. Chem. Phys. Lett. 2010, 501, 134;
- 25hZh, L.; L. Gu.; Yao, Y.; Shao, K.; Yung, J. J.; Zhong, J. Theor. Comput. Chem. 2010, 9, 813;
- 25iGu, L. Z.; Yao, L.; Shao, Y.; Liu, W.; Gao, H. Mol. Phys. 2011, 1;
- 25jLi, Q.; Xia, W. W.; Yao, L.; Shao, Y. Can. J. Chem. 2012, 90, 186;
- 25kLi, Q.; Yao, L.; Shao, Y. ; Chem. 2012, 2, 1-13;
10.5618/chem.2012.v2.n1.1 Google Scholar
- 25lLi, Q.; Yao, L.; Shao, Y.; Yang, K. J. Chin. Chem. Soc. 2014, 61( 3), 309-319.
- 26Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics; Prentice-Hall: Englewood⋅Cliffs, NJ, 1989.
- 27aForst, W.; Prasil, Z. J. Chem. Phys. 1970, 53, 3065;
- 27bForst, W. Chem. Rev. 1971, 71, 339;
- 27cForst, W. Theory of Unimolecular Reactions; Academic Press: New York, 1973.
- 28Hoare, M. R.; Ruijgrok, Th. W. J. Chem. Phys. 1970, 52, 113.
- 29Eyring, H.; Lin, S. H.; Lin, S. M. Basic Chemical Kinetics; A Wiley-Interscience Publication: New York, 1980.
- 30Baer, T.; Hase, W. L. Unimolecular Reaction Dynamics: Theory and Experiments; Oxford University Press: New York, 1996.
- 31Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Blackwell: Oxford, 1990.
- 32Frisch, M. J. et al. Gaussian 03, revision C. 02, Gaussian, Inc.: Wallingford, CT, 2004.