DFT Study of Structural, Chemical, and Optical Properties in Cun and PdCun−1 Clusters (n = 3–20)
Corresponding Author
José Aminadat Morato-Márquez
Departamento de ciencias de la tierra, Tecnológico Nacional de México—Instituto Tecnológico de Villahermosa, Villahermosa, Tabasco, México
División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Cunduacán, Tabasco, México
Correspondence:
José Aminadat Morato-Márquez ([email protected])
Filiberto Ortíz-Chi ([email protected])
Search for more papers by this authorJosé Gilberto Torres-Torres
División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Cunduacán, Tabasco, México
Search for more papers by this authorCorresponding Author
Filiberto Ortíz-Chi
Secihti-Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Mérida, Yucatán, México
Correspondence:
José Aminadat Morato-Márquez ([email protected])
Filiberto Ortíz-Chi ([email protected])
Search for more papers by this authorCorresponding Author
José Aminadat Morato-Márquez
Departamento de ciencias de la tierra, Tecnológico Nacional de México—Instituto Tecnológico de Villahermosa, Villahermosa, Tabasco, México
División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Cunduacán, Tabasco, México
Correspondence:
José Aminadat Morato-Márquez ([email protected])
Filiberto Ortíz-Chi ([email protected])
Search for more papers by this authorJosé Gilberto Torres-Torres
División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Cunduacán, Tabasco, México
Search for more papers by this authorCorresponding Author
Filiberto Ortíz-Chi
Secihti-Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Mérida, Yucatán, México
Correspondence:
José Aminadat Morato-Márquez ([email protected])
Filiberto Ortíz-Chi ([email protected])
Search for more papers by this authorABSTRACT
Bimetallic nanoclusters exhibit catalytic activity and electronic properties susceptible to single-atom changes. Previous theoretical studies on Pd-doped copper clusters have focused on narrow size ranges or magic numbers of atoms (e.g., 13, 38, 43, and 55), limiting comprehensive understanding and experimental comparison. We employ a growth-pattern algorithm to explore the potential energy surface of the Cun and PdCun−1 clusters (n = 3–20), identifying new putative global minima for PdCu7 and PdCu9–11. For both systems, we analyze their structural, electronic, chemical, and optical properties as a function of size. Structural analysis shows that progressive Cu addition stabilizes Pd in apical positions, reducing electron acceptance barriers and enhancing nucleophilicity compared to its pure copper counterpart. Concurrently, Cu addition induces a blueshift in UV–Vis absorption spectra, indicating increased electronic transition energies. These findings suggest promising applications for these bimetallic clusters in catalysis and electronic sensing.
Open Research
Data Availability Statement
All data required to reproduce the calculations presented in this work are provided in the Supporting Information. This includes the Cartesian coordinates of all global minima structures, and in some cases, the corresponding low-lying isomers for the Cun and PdCun−1 cluster systems with n = 3 to 20. All structures were optimized at the B3PW91/Def2-TZVP level of theory.
Supporting Information
Filename | Description |
---|---|
jcc70183-sup-0001-supinfo.docxWord 2007 document , 728.4 KB |
Data S1. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Liu and A. Corma, “Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles,” Chemical Reviews 118 (2018): 4981–5079.
- 2F. Baletto and R. Ferrando, “Structural Properties of Nanoclusters: Energetic, Thermodynamic, and Kinetic Effects,” Reviews of Modern Physics 77 (2005): 371–423.
- 3A. W. Castleman and S. N. Khanna, “Clusters, Superatoms, and Building Blocks of New Materials,” Journal of Physical Chemistry C 113 (2009): 2664–2675.
- 4J. P. Wilcoxon and B. L. Abrams, “Synthesis, Structure and Properties of Metal Nanoclusters,” Chemical Society Reviews 35 (2006): 1162.
- 5M. F. Matus and H. Häkkinen, “Understanding Ligand-Protected Noble Metal Nanoclusters at Work,” Nature Reviews Materials 8 (2023): 372–389.
- 6X. Zou, X. Kang, and M. Zhu, “Recent Developments in the Investigation of Driving Forces for Transforming Coinage Metal Nanoclusters,” Chemical Society Reviews 52 (2023): 5892–5967.
- 7S. Qian, Z. Wang, Z. Zuo, X. Wang, Q. Wang, and X. Yuan, “Engineering Luminescent Metal Nanoclusters for Sensing Applications,” Coordination Chemistry Reviews 451 (2022): 214268.
- 8A. A. B. Padama, J. D. Ocon, H. Nakanishi, and H. Kasai, “Interaction of CO, O, and CO2 with Cu Cluster Supported on Cu(111): A Density Functional Theory Study,” Journal of Physics: Condensed Matter 31 (2019): 415201.
- 9M. B. Gawande, A. Goswami, F.-X. Felpin, et al., “Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis,” Chemical Reviews 116 (2016): 3722–3811.
- 10C. Liu, S. K. Iyemperumal, N. A. Deskins, and G. Li, “Photocatalytic CO2 reduction by Highly Dispersed cu Sites on TiO2,” Journal of Photonics for Energy 7 (2016): 012004.
10.1117/1.JPE.7.012004 Google Scholar
- 11J. Chen, S. K. Iyemperumal, T. Fenton, et al., “Synergy Between Defects, Photoexcited Electrons, and Supported Single Atom Catalysts for CO2 Reduction,” ACS Catalysis 8 (2018): 10464–10478.
- 12E. Fernández, M. Boronat, and A. Corma, “Trends in the Reactivity of Molecular O2 With Copper Clusters: Influence of Size and Shape,” Journal of Physical Chemistry C 119 (2015): 19832–19846.
- 13Q. Hu, Z. Han, X. Wang, et al., “Facile Synthesis of Sub-Nanometric Copper Clusters by Double Confinement Enables Selective Reduction of Carbon Dioxide to Methane,” Angewandte Chemie, International Edition 59 (2020): 19054–19059.
- 14S. Liu and S. Huang, “Size Effects and Active Sites of Cu Nanoparticle Catalysts for CO2 Electroreduction,” Applied Surface Science 475 (2019): 20–27.
- 15C. Li, H. Li, Y. Cui, et al., “A Density Functional Investigation on the Structures, Electronic, Spectral and Fluxional Properties of VB-20 Cluster,” Journal of Molecular Liquids 339 (2021): 116764.
- 16C.-G. Li, Z.-G. Shen, J. Zhang, et al., “Analysis of the Structures, Stabilities and Electronic Properties of MB16− (M = V, Cr, Mn, Fe, Co, Ni) Clusters and Assemblies,” New Journal of Chemistry 44 (2020): 5109–5119.
- 17K. Ge Cheng, D. Xing Song, H. Jun Hou, et al., “Probing the Structural Evolution, Electronic and Vibrational Properties of Neutral and Anionic Potassium-Doped Magnesium Clusters,” Results in Physics 65 (2024): 107954.
10.1016/j.rinp.2024.107954 Google Scholar
- 18C. Li, Y. Cui, H. Tian, et al., “Systematic Investigation of Geometric Structures and Electronic Properties of Lithium Doped Magnesium Clusters,” Computational Materials Science 200 (2021): 110800.
- 19C.-G. Li, Z.-G. Shen, J. Zhang, et al., “A Comparative Study of CunX (X = Sc, Y;n= 1–10) Clusters Based on the Structures, and Electronic and Aromatic Properties,” New Journal of Chemistry 43 (2019): 6597–6606.
- 20D. Die, B.-X. Zheng, L.-Q. Zhao, Q.-W. Zhu, and Z.-Q. Zhao, “Insights Into the Structural, Electronic and Magnetic Properties of V-Doped Copper Clusters: Comparison With Pure Copper Clusters,” Scientific Reports 6 (2016): 31978.
- 21N. T. Mai, N. T. Lan, N. T. Cuong, et al., “Systematic Investigation of the Structure, Stability, and Spin Magnetic Moment of CrMnClusters (M = Cu, Ag, Au, and n= 2–20) by DFT Calculations,” ACS Omega 6 (2021): 20341–20350.
- 22M. Boulbazine and A.-G. Boudjahem, “Stability, Electronic and Magnetic Properties of Mn-Doped Copper Clusters: A Meta-GGA Functional Investigation,” Journal of Cluster Science 30 (2019): 31–44.
- 23P. L. Rodríguez-Kessler and A. Muñoz-Castro, “Structure and Stability of Mo-Doped Cun (n = 1–12) Clusters: DFT Calculations,” Inorganica Chimica Acta 556 (2023): 121620.
- 24R. K. Singh, T. Iwasa, and T. Taketsugu, “Insights Into Geometries, Stabilities, Electronic Structures, Reactivity Descriptors, and Magnetic Properties of Bimetallic NimCun–m(m = 1, 2;n = 3–13) Clusters: Comparison With Pure Copper Clusters,” Journal of Computational Chemistry 39 (2018): 1878–1889.
- 25S. L. Han, X. Xue, X. C. Nie, et al., “First-Principles Calculations on the Role of Ni-Doping in Cu Clusters: From Geometric and Electronic Structures to Chemical Activities Towards CO2,” Physics Letters A 374 (2010): 4324–4330.
- 26P. L. Rodríguez-Kessler, A. R. Rodríguez-Domínguez, J. A. Morato-Márquez, F. Ortiz-Chi, D. MacLeod Carey, and A. Muñoz-Castro, “On the Search of Small Cu-Ru Atomically Precise Superatoms. Cu10Ru Cluster as a Stable 18-Ve Endohedral Structure,” Chemical Physics Letters 754 (2020): 137721.
- 27J. A. Morato-Márquez, S. Godavarthi, C. G. Espinosa-González, et al., “Structural Characterization and Electronic Properties of Ru-Doped Cun (n = 1–12) Clusters,” Chemical Physics Letters 754 (2020): 137677.
- 28M. Boulbazine and A.-G. Boudjahem, “Electronic Properties and Adsorption Mechanism of Ru-Doped Copper Clusters Towards CH3OH Molecule: A DFT Investigation,” Journal of Molecular Graphics & Modelling 121 (2023): 108442.
- 29B. Zamora, L. Nyulászi, and T. Höltzl, “CO2 and H2 Activation on Zinc-Doped Copper Clusters,” ChemPhysChem 25 (2024): e202300409.
- 30M. Gholinejad, F. Khosravi, M. Afrasi, J. M. Sansano, and C. Nájera, “Applications of Bimetallic PdCu Catalysts,” Catalysis Science & Technology 11 (2021): 2652–2702.
- 31R. Zhang, Y. Wang, B. Wang, and L. Ling, “Probing Into the Effects of Cluster Size and Pd Ensemble as Active Center on the Activity of H2 Dissociation Over the Noble Metal Pd-Doped Cu Bimetallic Clusters,” Molecular Catalysis 475 (2019): 110457.
- 32K. Jug, B. Zimmermann, P. Calaminici, and A. M. Köster, “Structure and Stability of Small Copper Clusters,” Journal of Chemical Physics 116 (2002): 4497–4507.
- 33G. Guzmán-Ramírez, F. Aguilera-Granja, and J. Robles, “DFT and GEGA Genetic Algorithm Optimized Structures of Cunν (ν=±1,0,2; n=3-13) Clusters,” European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics 57 (2010): 49–60.
- 34M. Yang, K. A. Jackson, C. Koehler, T. Frauenheim, and J. Jellinek, “Structure and Shape Variations in Intermediate-Size Copper Clusters,” Journal of Chemical Physics 124 (2006): 024308.
- 35W. H. Zhu, F. Yang, Q. Zeng, M. L. Yang, and K. A. Jackson, “Stability Competition Between the Layered and Compact Cu16 Clusters,” European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics 66 (2012): 209.
- 36A. S. Chaves, G. G. Rondina, M. J. Piotrowski, P. Tereshchuk, and J. L. F. Da Silva, “The Role of Charge States in the Atomic Structure of Cun and Ptn (n = 2–14 atoms) Clusters: A DFT Investigation,” Journal of Physical Chemistry A 118 (2014): 10813–10821.
- 37A. S. Chaves, M. J. Piotrowski, and J. L. F. Da Silva, “Evolution of the Structural, Energetic, and Electronic Properties of the 3d, 4d, and 5d Transition-Metal Clusters (30 TMnsystems for n = 2–15): A Density Functional Theory Investigation,” Physical Chemistry Chemical Physics 19 (2017): 15484–15502.
- 38P. Calaminici, M. Pérez-Romero, J. M. Vásquez-Pérez, and A. M. Köster, “On the Ground State Structure of Neutral Cun (n = 12, 14, 16, 18, 20) Clusters,” Computational and Theoretical Chemistry 1021 (2013): 41–48.
- 39S. Darby, T. V. Mortimer-Jones, R. L. Johnston, and C. Roberts, “Theoretical Study of Cu–Au Nanoalloy Clusters Using a Genetic Algorithm,” Journal of Chemical Physics 116 (2002): 1536–1550.
- 40G. H. Guvelioglu, P. Ma, X. He, R. C. Forrey, and H. Cheng, “First Principles Studies on the Growth of Small Cu Clusters and the Dissociative Chemisorption of H2,” Physical Review B 73 (2006): 155436.
- 41S. M. Sintillo, A. Bautista Hernández, A. A. Peláez Cid, W. Ibarra Hernández, and M. S. Villanueva, “Cun Clusters (n= 13, 43, and 55) as Possible Degradant Agents of mSF6 Molecules (m= 1, 2): A DFT Study,” ACS Omega 7 (2022): 34401–34411.
- 42O. A. Sanders-Gutierrez, A. Luna-Valenzuela, A. Posada-Borbón, J. Christian Schön, and A. Posada-Amarillas, “Molecular Dynamics and DFT Study of 38-Atom Coinage Metal Clusters,” Computational Materials Science 201 (2022): 110908.
- 43P. Jaque and A. Toro-Labbé, “Characterization of Copper Clusters Through the Use of Density Functional Theory Reactivity Descriptors,” Journal of Chemical Physics 117 (2002): 3208–3218.
- 44P. Jaque and A. Toro-Labbé, “The Formation of Neutral Copper Clusters From Experimental Binding Energies and Reactivity Descriptors,” Journal of Physical Chemistry B 108 (2004): 2568–2574.
- 45P. Jaque and A. Toro–Labbé, “Polarizability of Neutral Copper Clusters,” Journal of Molecular Modeling 20 (2014): 2410.
- 46K. Baishya, J. C. Idrobo, S. Öğüt, M. Yang, K. A. Jackson, and J. Jellinek, “First-Principles Absorption Spectra of Cun (n=2–20) Clusters,” Physical Review B 83 (2011): 245402.
- 47B. Anak, M. Bencharif, and F. Rabilloud, “Time-Dependent Density Functional Study of UV-Visible Absorption Spectra of Small Noble Metal Clusters (Cun, Agn, Aun, n = 2–9, 20),” RSC Advances 4 (2014): 13001.
- 48S. Lecoultre, A. Rydlo, C. Félix, J. Buttet, S. Gilb, and W. Harbich, “Optical Absorption of Small Copper Clusters in Neon: Cun, (n= 1–9),” Journal of Chemical Physics 134 (2011): 074303.
- 49E. Florez, F. Mondragón, and P. Fuentealba, “Effect of Ni and Pd on the Geometry, Electronic Properties, and Active Sites of Copper Clusters,” Journal of Physical Chemistry B 110 (2006): 13793–13798.
- 50P. L. Rodríguez-Kessler, P. Alonso-Dávila, P. Navarro-Santos, J. A. Morato-Márquez, F. Ortíz-Chi, and A. R. Rodríguez-Domínguez, “Hydrogen Chemisorption on Pd-Doped Copper Clusters,” Journal of Physical Chemistry C 123 (2019): 15834–15840.
- 51F. Gobal, R. Arab, and M. Nahali, “A Comparative DFT Study of Atomic and Molecular Oxygen Adsorption on Neutral and Negatively Charged PdxCu3−x (x=0–3) Nano-Clusters,” Journal of Molecular Structure 959 (2010): 15–21.
- 52A. Alvarez-Garcia, E. Flórez, A. Moreno, and C. Jimenez-Orozco, “CO2 Activation on Small Cu-Ni and Cu-Pd Bimetallic Clusters,” Molecular Catalysis 484 (2020): 110733.
- 53B. A. Baraiya, V. Mankad, and P. K. Jha, “Interaction mechanism of CO with Pd-rich copper clusters,” AIP Conference Proceedings 2115 (2019): 030543.
- 54D. Chattaraj and C. Majumder, “CO2 Hydrogenation to Formic Acid on Pd–Cu Nanoclusters: A DFT Study,” Physical Chemistry Chemical Physics 25 (2023): 2584–2594.
- 55X. Cao, Q. Fu, and Y. Luo, “Catalytic Activity of Pd-Doped Cu Nanoparticles for Hydrogenation as a Single-Atom-Alloy Catalyst,” Physical Chemistry Chemical Physics 16 (2014): 8367–8375.
- 56Q. Liu, X. Wang, L. Li, K. Song, Y. Wang, and P. Qian, “Catalytic Activity, Thermal Stability and Structural Evolution of PdCu Single-Atom Alloy Catalysts: The Effects of Size and Morphology,” RSC Advances 12 (2022): 62–71.
- 57C. A. Casey-Stevens, M. Yang, G. R. Weal, S. M. McIntyre, B. K. Nally, and A. L. Garden, “A Theoretical Investigation of 38-Atom CuPd Clusters: The Effect of Potential Parameterisation on Structure and Segregation,” Physical Chemistry Chemical Physics 23 (2021): 15950–15964.
- 58C. López-Castro, F. Ortiz-Chi, and G. Merino, “An Efficient Growth Pattern Algorithm (GrowPAL) for Cluster Structure Prediction,” Journal of Chemical Theory and Computation 20 (2024): 4939–4948.
- 59F. Ortíz-Chi and G. Merino, “GLOMOS. Cinvestav Mérida, Mérida, Mexico,” 2020.
- 60J. P. Perdew and Y. Wang, “Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy,” Physical Review B 45 (1992): 13244–13249.
- 61F. Weigend, F. Furche, and R. Ahlrichs, “Gaussian Basis Sets of Quadruple Zeta Valence Quality for Atoms H–Kr,” Journal of Chemical Physics 119 (2003): 12753–12762.
- 62F. Weigend and R. Ahlrichs, “Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy,” Physical Chemistry Chemical Physics 7 (2005): 3297–3305.
- 63M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., “Gaussian16. Gaussian Inc, Wallingford CT,” 2016.
- 64C. Massobrio, A. Pasquarello, and R. Car, “Interpretation of Photoelectron Spectra in Cun− Clusters Including Thermal and Final-State Effects: The Case of Cu7−,” Physical Review B 54 (1996): 8913–8918.
- 65U. J. Rangel-Peña, R. L. Camacho-Mendoza, S. González-Montiel, L. Feria, and J. Cruz-Borbolla, “Nonconventional C–H·Cu Interaction Between Copper Cun Clusters (n = 3–20) and Aromatic Compounds,” Journal of Cluster Science 32 (2021): 1155–1173.
- 66M. Kabir, A. Mookerjee, and A. K. Bhattacharya, “Structure and Stability of Copper Clusters: A Tight-Binding Molecular Dynamics Study,” Physical Review A 69 (2004): 043203.
- 67A. A. Ahmed, “Structural and Electronic Properties of the Adsorption of Nitric Oxide Molecule on Copper Clusters CuN(N = 1–7): A DFT Study,” Chemical Physics Letters 753 (2020): 137543.
- 68R. Hoppe, “Effective Coordination Numbers (ECoN) and Mean Fictive Ionic Radii (MEFIR),” Zeitschrift fur Kristallographie - Crystalline Materials 150 (1979): 23–52.
- 69M. J. Piotrowski, P. Piquini, and J. L. F. Da Silva, “Density Functional Theory Investigation of 3d,4d, and 5d13-Atom Metal Clusters,” Physical Review B 81 (2010): 155446.
- 70 W. Martienssen and H. Warlimont, eds., Springer Handbook of Condensed Matter and Materials Data (Springer, 2005).
10.1007/3-540-30437-1 Google Scholar
- 71O. Ingólfsson, U. Busolt, and K. Sugawara, “Energy-Resolved Collision-Induced Dissociation of Cun+ (n=2–9): Stability and Fragmentation Pathways,” Journal of Chemical Physics 112 (2000): 4613–4620.
- 72M. B. Knickelbein, “Electronic Shell Structure in the Ionization Potentials of Copper Clusters,” Chemical Physics Letters 192 (1992): 129–134.
- 73J. Ho, K. M. Ervin, and W. C. Lineberger, “Photoelectron Spectroscopy of Metal Cluster Anions: Cun−, Agn−, and Aun−,” Journal of Chemical Physics 93 (1990): 6987–7002.
- 74C. L. Pettiette, S. H. Yang, M. J. Craycraft, et al., “Ultraviolet Photoelectron Spectroscopy of Copper Clusters,” Journal of Chemical Physics 88 (1988): 5377–5382.
- 75R. F. Nalewajski, J. Korchowiec, and A. Michalak, Reactivity Criteria in Charge Sensitivity Analysis, Density Functional Theory IV, 183 (Springer, 1996), 25–141.
- 76W. Yang and R. G. Parr, “Hardness, Softness, and the Fukui Function in the Electronic Theory of Metals and Catalysis,” Proceedings. National Academy of Sciences. United States of America 82 (1985): 6723–6726.
- 77R. G. Parr, L. V. Szentpály, and S. Liu, “Electrophilicity Index,” Journal of the American Chemical Society 121 (1999): 1922–1924.
- 78R. G. Parr, S. R. Gadre, and L. J. Bartolotti, “Local Density Functional Theory of Atoms and Molecules,” Proceedings. National Academy of Sciences. United States of America 76 (1979): 2522–2526.
- 79C. Vázquez-Vázquez, M. Bañobre-López, A. Mitra, M. A. López-Quintela, and J. Rivas, “Synthesis of Small Atomic Copper Clusters in Microemulsions,” Langmuir 25 (2009): 8208–8216.