Simulating ion channel activation mechanisms using swarms of trajectories
Bogdan Lev
School of Science, RMIT University, Melbourne, Victoria, 3000 Australia
Search for more papers by this authorCorresponding Author
Toby W. Allen
School of Science, RMIT University, Melbourne, Victoria, 3000 Australia
E-mail: [email protected].Search for more papers by this authorBogdan Lev
School of Science, RMIT University, Melbourne, Victoria, 3000 Australia
Search for more papers by this authorCorresponding Author
Toby W. Allen
School of Science, RMIT University, Melbourne, Victoria, 3000 Australia
E-mail: [email protected].Search for more papers by this authorAbstract
Atomic-level studies of protein activity represent a significant challenge as a result of the complexity of conformational changes occurring on wide-ranging timescales, often greatly exceeding that of even the longest simulations. A prime example is the elucidation of protein allosteric mechanisms, where localized perturbations transmit throughout a large macromolecule to generate a response signal. For example, the conversion of chemical to electrical signals during synaptic neurotransmission in the brain is achieved by specialized membrane proteins called pentameric ligand-gated ion channels. Here, the binding of a neurotransmitter results in a global conformational change to open an ion-conducting pore across the nerve cell membrane. X-ray crystallography has produced static structures of the open and closed states of the proton-gated GLIC pentameric ligand-gated ion channel protein, allowing for atomistic simulations that can uncover changes related to activation. We discuss a range of enhanced sampling approaches that could be used to explore activation mechanisms. In particular, we describe recent application of an atomistic string method, based on Roux's “swarms of trajectories” approach, to elucidate the sequence and interdependence of conformational changes during activation. We illustrate how this can be combined with transition analysis and Brownian dynamics to extract thermodynamic and kinetic information, leading to understanding of what controls ion channel function. © 2019 Wiley Periodicals, Inc.
References
- 1R. O. Dror, R. M. Dirks, J. P. Grossman, H. Xu, D. E. Shaw, Annu. Rev. Biophys. 2012, 41, 429.
- 2B. Lev, S. Murail, F. Poitevin, B. A. Cromer, M. Baaden, M. Delarue, T. W. Allen, Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E4158.
- 3J. P. Changeux, Annu. Rev. Biophys. 2012, 41, 103.
- 4H. Nury, C. Van Renterghem, Y. Weng, A. Tran, M. Baaden, V. Dufresne, J. P. Changeux, J. M. Sonner, M. Delarue, P. J. Corringer, Nature 2011, 469, 428.
- 5G. Brannigan, D. N. LeBard, J. Henin, R. G. Eckenhoff, M. L. Klein, Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 14122.
- 6B. Laurent, S. Murail, A. Shahsavar, L. Sauguet, M. Delarue, M. Baaden, Structure 2016, 24, 595.
- 7A. Kopp Lugli, C. S. Yost, C. H. Kindler, Eur. J. Anaesthesiol. 2009, 26, 807.
- 8E. Flood, C. Boiteux, B. Lev, I. Vorobyov, T. W. Allen, Chem. Rev. 2019, 119, 7737.
- 9M. O. Jensen, V. Jogini, D. W. Borhani, A. E. Leffler, R. O. Dror, D. E. Shaw, Science 2012, 336, 229.
- 10C. Boiteux, I. Vorobyov, T. W. Allen, Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 3454.
- 11O. Yoluk, E. Lindahl, M. Andersson, ACS Chem. Nerosci. 2015, 6, 1459.
- 12H. Nury, F. Poitevin, C. Van Renterghem, T. Allen, J. P. Changeux, P. J. Corringer, M. Delarue, M. Baaden, Biophys. J. 2011, 100, 272.
10.1016/j.bpj.2010.12.1695 Google Scholar
- 13R. Yu, E. Hurdiss, T. Greiner, R. Lape, L. Sivilotti, P. C. Biggin, Biochemistry 2014, 53, 6041.
- 14N. Calimet, M. Simoes, J. P. Changeux, M. Karplus, A. Taly, M. Cecchini, Proc. Natl. Acad. Sci. U. S. A. 2013, 110, E3987.
- 15L. Orellana, O. Yoluk, O. Carrillo, M. Orozco, E. Lindahl, Nat. Commun. 2016, 7, 12575.
- 16S. A. Adcock, J. A. McCammon, Chem. Rev. 2006, 106, 1589.
- 17F. Pietrucci, Rev. Phys. 2017, 2, 32.
10.1016/j.revip.2017.05.001 Google Scholar
- 18G. M. Torrie, J. P. Valleau, J. Comp. Phys. 1977, 23, 187.
- 19S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, J. M. Rosenberg, J. Comput. Chem. 1992, 13, 1011.
- 20M. R. Shirts, J. D. Chodera, J. Chem. Phys. 2008, 129, 124105.
- 21A. F. Voter, J. Chem. Phys. 1997, 106, 4665.
- 22D. Hamelberg, J. Mongan, J. A. McCammon, J. Chem. Phys. 2004, 120, 11919.
- 23D. R. Glowacki, E. Paci, D. V. Shalashilin, J. Phys. Chem. B 2009, 113, 16603.
- 24E. A. Carter, G. Ciccotti, J. T. Hynes, R. Kapral, Chem. Phys. Lett. 1989, 156, 472.
- 25E. Darve, A. Pohorille, J. Chem. Phys. 2001, 115, 9169.
- 26E. Darve, M. A. Wilson, A. Pohorille, Mol. Simul. 2002, 28, 113.
- 27J. Henin, C. Chipot, J. Chem. Phys. 2004, 121, 2904.
- 28D. Rodriguez-Gomez, E. Darve, A. Pohorille, J. Chem. Phys. 2004, 120, 3563.
- 29C. Chipot, J. Henin, J. Chem. Phys. 2005, 123, 244906.
- 30A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 12562.
- 31A. Barducci, G. Bussi, M. Parrinello, Phys. Rev. Lett. 2008, 100, 020603.
- 32P. Raiteri, A. Laio, F. L. Gervasio, C. Micheletti, M. Parrinello, J. Phys. Chem. B 2006, 110, 3533.
- 33E. Darve, D. Rodriguez-Gomez, A. Pohorille, J. Chem. Phys. 2008, 128, 144120.
- 34M. Marchi, P. Ballone, J. Chem. Phys. 1999, 110, 3697.
- 35H. Grubmuller, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 1995, 52, 2893.
- 36Huber, T.; Torda, A. E.; van Gunsteren, W. F. J. Comput. Aided Mol. Des. 1994, 8(6), 695–708.
- 37S. Marsili, A. Barducci, R. Chelli, P. Procacci, V. Schettino, J. Phys. Chem. B 2006, 110, 14011.
- 38A. Barducci, M. Bonomi, M. Parrinello, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 826.
- 39Y. Sugita, Y. Okamoto, Chem. Phys. Lett. 1999, 314, 141.
- 40N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, J. Chem. Phys. 1953, 21, 1087.
- 41H. Fukunishi, O. Watanabe, S. Takada, J. Chem. Phys. 2002, 116, 9058.
- 42P. Liu, B. Kim, R. A. Friesner, B. J. Berne, Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 13749.
- 43E. Marinari, G. Parisi, Europhys. Lett. 1992, 19, 451.
- 44A. C. Pan, D. Jacobson, K. Yatsenko, D. Sritharan, T. M. Weinreich, D. E. Shaw, Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 4244.
- 45W. Jiang, Y. Luo, L. Maragliano, B. Roux, J. Chem. Theory Comput. 2012, 8, 4672.
- 46Y. Sugita, A. Kitao, Y. Okamoto, J. Chem. Phys. 2000, 113, 6042.
- 47T. J. Harpole, L. Delemotte, Biochim. Biophys. Acta Biomembr. 2018, 1860, 909.
- 48G. R. Bowman, V. S. Pande, F. Noé, An Introduction to Markov State Models and their Application to Long Timescale Molecular Simulation, Springer: Dordrecht Heidenberg, New York and London, 2014.
10.1007/978-94-007-7606-7 Google Scholar
- 49V. S. Pande, K. Beauchamp, G. R. Bowman, Methods 2010, 52, 99.
- 50C. Schütte, M. Sarich, Metastability and Markov state models in molecular dynamics: modeling. Analysis, Algorithmic Approaches, American Mathematical Society, Providence, RI, 2013.
10.1090/cln/024 Google Scholar
- 51F. Noe, S. Fischer, Curr. Opin. Struct. Biol. 2008, 18, 154.
- 52J. D. Chodera, F. Noé, Curr. Opin. Struct. Biol. 2014, 25, 135.
- 53B. E. Husic, V. S. Pande, J. Am. Chem. Soc. 2018, 140, 2386.
- 54F. Noe, C. Schutte, E. Vanden-Eijnden, L. Reich, T. R. Weikl, Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 19011.
- 55I. Buch, T. Giorgino, G. De Fabritiis, Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 10184.
- 56A. C. Pan, D. Sezer, B. Roux, J. Phys. Chem. B 2008, 112, 3432.
- 57L. R. Pratt, J. Chem. Phys. 1986, 85, 5045.
- 58P. G. Bolhuis, D. Chandler, C. Dellago, P. L. Geissler, Annu. Rev. Phys. Chem. 2002, 53, 291.
- 59C. Dellago, P. G. Bolhuis, D. Chandler, J. Chem. Phys. 1999, 110, 6617.
- 60T. S. van Erp, D. Moroni, P. G. Bolhuis, J. Chem. Phys. 2003, 118, 7762.
- 61L. Maragliano, A. Fischer, E. Vanden-Eijnden, G. Ciccotti, J. Chem. Phys. 2006, 125, 24106.
- 62R. M. Levy, A. R. Srinivasan, W. K. Olson, J. A. McCammon, Biopolymers 1984, 23, 1099.
- 63L. Molgedey, H. G. Schuster, Phys. Rev. Lett. 1994, 72, 3634.
- 64C. R. Schwantes, V. S. Pande, J. Chem. Theory Comput. 2013, 9, 2000.
- 65G. Perez-Hernandez, F. Paul, T. Giorgino, G. De Fabritiis, F. Noe, J. Chem. Phys. 2013, 139, 015102.
- 66R. J. Hilf, R. Dutzler, Nature 2008, 452, 375.
- 67R. J. Hilf, R. Dutzler, Curr. Opin. Struct. Biol. 2009, 19, 418.
- 68N. Bocquet, H. Nury, M. Baaden, C. Le Poupon, J. P. Changeux, M. Delarue, P. J. Corringer, Nature 2009, 457, 111.
- 69M. S. Prevost, L. Sauguet, H. Nury, C. Van Renterghem, C. Huon, F. Poitevin, M. Baaden, M. Delarue, P. J. Corringer, Nat. Struct. Mol. Biol. 2012, 19, 642.
- 70L. Sauguet, A. Shahsavar, F. Poitevin, C. Huon, A. Menny, A. Nemecz, A. Haouz, J. P. Changeux, P. J. Corringer, M. Delarue, Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 966.
- 71T. Althoff, R. E. Hibbs, S. Banerjee, E. Gouaux, Nature 2014, 512, 333.
- 72R. E. Hibbs, E. Gouaux, Nature 2011, 474, 54.
- 73T. F. Miller, 3rd., E. Vanden-Eijnden, D. Chandler, Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 14559.
- 74F. Zhu, G. Hummer, Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 19814.
- 75V. Ovchinnikov, M. Karplus, E. Vanden-Eijnden, J. Chem. Phys. 2011, 134, 085103.
- 76S. T. Stober, C. F. Abrams, J. Phys. Chem. B 2012, 116, 9371.
- 77Y. Matsunaga, H. Fujisaki, T. Terada, T. Furuta, K. Moritsugu, A. Kidera, PLoS Comput. Biol. 2012, 8, e1002555.
- 78H. Vashisth, L. Maragliano, C. F. Abrams, Biophys. J. 2012, 102, 1979.
- 79J. J. Lacroix, S. A. Pless, L. Maragliano, F. V. Campos, J. D. Galpin, C. A. Ahern, B. Roux, F. Bezanilla, J. Gen. Physiol. 2012, 140, 635.
- 80F. Pontiggia, D. V. Pachov, M. W. Clarkson, J. Villali, M. F. Hagan, V. S. Pande, D. Kern, Nat. Commun. 2015, 6, 7284.
- 81S. Jo, H. Rui, J. B. Lim, J. B. Klauda, W. Im, J. Phys. Chem. B 2010, 114, 13342.
- 82E. Weinan, W. Q. Ren, E. Vanden-Eijnden, Phys. Rev. B 2002, 66, 052301.
- 83M. E. Johnson, G. Hummer, J. Phys. Chem. B 2012, 116, 8573.
- 84S. H. Huo, J. E. Straub, J. Chem. Phys. 1997, 107, 5000.
- 85M. Moradi, G. Enkavi, E. Tajkhorshid, Nat. Commun. 2015, 6, 8393.
- 86R. J. Hilf, R. Dutzler, Nature 2009, 457, 115.
- 87J. Du, W. Lu, S. Wu, Y. Cheng, E. Gouaux, Nature 2015, 526, 224.
- 88X. Huang, H. Chen, K. Michelsen, S. Schneider, P. L. Shaffer, Nature 2015, 526, 277.
- 89G. Hassaine, C. Deluz, L. Grasso, R. Wyss, M. B. Tol, R. Hovius, A. Graff, H. Stahlberg, T. Tomizaki, A. Desmyter, C. Moreau, X. D. Li, F. Poitevin, H. Vogel, H. Nury, Nature 2014, 512, 276.
- 90P. S. Miller, A. R. Aricescu, Nature 2014, 512, 270.
- 91G. Duret, C. Van Renterghem, Y. Weng, M. Prevost, G. Moraga-Cid, C. Huon, J. M. Sonner, P. J. Corringer, Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 12143.
- 92J. L. Eisele, S. Bertrand, J. L. Galzi, A. Devillers-Thiery, J. P. Changeux, D. Bertrand, Nature 1993, 366, 479.
- 93T. Grutter, L. P. de Carvalho, V. Dufresne, A. Taly, S. J. Edelstein, J. P. Changeux, Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 18207.
- 94N. Bocquet, L. Prado de Carvalho, J. Cartaud, J. Neyton, C. Le Poupon, A. Taly, T. Grutter, J. P. Changeux, P. J. Corringer, Nature 2007, 445, 116.
- 95P. J. Corringer, F. Poitevin, M. S. Prevost, L. Sauguet, M. Delarue, J. P. Changeux, Structure 2012, 20, 941.
- 96C. Bertozzi, I. Zimmermann, S. Engeler, R. J. C. Hilf, R. Dutzler, PLoS Biol. 2016, 14, e1002393.
- 97L. G. Sivilotti, J. Physiol. 2010, 588, 45.
- 98A. Nemecz, H. Hu, Z. Fourati, C. Van Renterghem, M. Delarue, P. J. Corringer, PLoS Biol. 2017, 15, e2004470.
- 99H. Hu, K. Ataka, A. Menny, Z. Fourati, L. Sauguet, P. J. Corringer, P. Koehl, J. Heberle, M. Delarue, Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E12172.
- 100C. D. Dellisanti, B. Ghosh, S. M. Hanson, J. M. Raspanti, V. A. Grant, G. M. Diarra, A. M. Schuh, K. Satyshur, C. S. Klug, C. Czajkowski, PLoS Biol. 2013, 11, e1001714.
- 101P. Purohit, S. Gupta, S. Jadey, A. Auerbach, Nat. Commun. 2013, 4, 2984.
- 102P. Purohit, A. Mitra, A. Auerbach, Nature 2007, 446, 930.
- 103N. E. Martin, S. Malik, N. Calimet, J. P. Changeux, M. Cecchini, PLoS Comput. Biol. 2017, 13, e1005784.
- 104S. A. Pless, A. W. Leung, J. D. Galpin, C. A. Ahern, J. Biol. Chem. 2011, 286, 35129.
- 105W. Y. Lee, S. M. Sine, Nature 2005, 438, 243.
- 106P. Purohit, A. Auerbach, J. Gen. Physiol. 2007, 130, 559.
- 107C. D. Dellisanti, S. M. Hanson, L. Chen, C. Czajkowski, J. Biol. Chem. 2011, 286, 3658.
- 108J. Schlitter, M. Engels, P. Kruger, E. Jacoby, A. Wollmer, Mol. Simul. 1993, 10, 291.
- 109V. Ovchinnikov, M. Karplus, J. Phys. Chem. B 2012, 116, 8584.
- 110S. Gupta, S. Chakraborty, R. Vij, A. Auerbach, J. Gen. Physiol. 2017, 149, 85.
- 111S. C. Lummis, D. L. Beene, L. W. Lee, H. A. Lester, R. W. Broadhurst, D. A. Dougherty, Nature 2005, 438, 248.
- 112L. Sauguet, R. J. Howard, L. Malherbe, U. S. Lee, P. J. Corringer, R. A. Harris, M. Delarue, Nat. Commun. 2014, 4, 1697.
- 113T. W. Allen, O. S. Andersen, B. Roux, J. Am. Chem. Soc. 2003, 125, 9868.
- 114S. Crouzy, T. B. Woolf, B. Roux, Biophys. J. 1994, 67, 1370.
- 115V. Burzomato, M. Beato, P. J. Groot-Kormelink, D. Colquhoun, L. G. Sivilotti, J. Neurosci. 2004, 24, 10924.
- 116H. Nury, F. Poitevin, C. Van Renterghem, J. P. Changeux, P. J. Corringer, M. Delarue, M. Baaden, Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 6275.
- 117Duke, T. A.; Le Novere, N.; Bray, D. J. Mol. Biol. 2001, 308(3), 541–553.
- 118G. Hummer, New J. Phys. 2005, 7, 34.
- 119D. J. Bicout, A. Szabo, J. Chem. Phys. 1998, 109, 2325.
- 120B. Roux, T. Allen, S. Berneche, W. Im, Q. Rev. Biophys. 2004, 37, 15.
- 121R. Lape, D. Colquhoun, L. G. Sivilotti, Nature 2008, 454, 722.
- 122S. A. Pless, J. W. Lynch, J. Biol. Chem. 2009, 284, 27370.
- 123M. S. Soh, A. Estrada-Mondragon, N. Durisic, A. Keramidas, J. W. Lynch, ACS Chem. Biol. 2017, 12, 805.
- 124Y. Huang, W. Chen, J. A. Wallace, J. Shen, J. Chem. Theory Comput. 2016, 12, 5411.
- 125J. M. Swails, D. M. York, A. E. Roitberg, J. Chem. Theory Comput. 2014, 10, 1341.
- 126B. K. Radak, C. Chipot, D. Suh, S. Jo, W. Jiang, J. C. Phillips, K. Schulten, B. Roux, J. Chem. Theory Comput. 2017, 13, 5933.
- 127T. Lazaridis, G. Hummer, J. Chem. Inf. Model. 2017, 57, 2833.
- 128S. L. Williams, P. G. Blachly, J. A. McCammon, Proteins 2011, 79, 3381.
- 129G. B. Goh, B. S. Hulbert, H. Zhou, C. L. Brooks, 3rd., Proteins 2014, 82, 1319.
- 130M. N. Kinde, Q. Chen, M. J. Lawless, D. D. Mowrey, J. Xu, S. Saxena, Y. Xu, P. Tang, Structure 2015, 23, 995.
- 131L. Zhu, F. K. Sheong, S. Cao, S. Liu, I. C. Unarta, J. Chem. Phys. 2019, 150, 124105.
- 132P. S. Garcia, S. E. Kolesky, A. Jenkins, Curr. Neuropharmacol. 2010, 8, 2.
- 133C. A. Reid, S. F. Berkovic, S. Petrou, Prog. Neurobiol. 2009, 87, 41.
- 134V. Oakes, C. Domene, Chem. Rev. 2019, 119, 5998.
- 135J. Payandeh, T. Scheuer, N. Zheng, W. A. Catterall, Nature 2011, 475, 353.
- 136X. Zhang, W. Ren, P. DeCaen, C. Yan, X. Tao, L. Tang, J. Wang, K. Hasegawa, T. Kumasaka, J. He, J. Wang, D. E. Clapham, N. Yan, Nature 2012, 486, 130.
- 137D. Shaya, F. Findeisen, F. Abderemane-Ali, C. Arrigoni, S. Wong, S. R. Nurva, G. Loussouarn, D. L. Minor, Jr.., J. Mol. Biol. 2014, 426, 467.
- 138E. C. McCusker, C. Bagneris, C. E. Naylor, A. R. Cole, N. D'Avanzo, C. G. Nichols, B. A. Wallace, Nat. Commun. 2012, 3, 1102.
- 139A. Sula, J. Booker, L. C. Ng, C. E. Naylor, P. G. DeCaen, B. A. Wallace, Nat. Commun. 2017, 8, 14205.
- 140M. J. Lenaeus, T. M. Gamal El-Din, C. Ing, K. Ramanadane, R. Pomes, N. Zheng, W. A. Catterall, Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E3051.
- 141H. Z. Shen, Q. Zhou, X. J. Pan, Z. Q. Li, J. P. Wu, N. Yan, Science 2017, 355, 6328.
- 142Z. Yan, Q. Zhou, L. Wang, J. Wu, Y. Zhao, G. Huang, W. Peng, H. Shen, J. Lei, N. Yan, Cell 2017, 170, 470, e411.
- 143X. Pan, Z. Li, Q. Zhou, H. Shen, K. Wu, X. Huang, J. Chen, J. Zhang, X. Zhu, J. Lei, W. Xiong, H. Gong, B. Xiao, N. Yan, Science 2018, 362, eaau2486.
- 144X. Pan, Z. Li, X. Huang, G. Huang, S. Gao, H. Shen, L. Liu, J. Lei, N. Yan, Science 2019, 363, 1309.
- 145H. Shen, D. Liu, K. Wu, J. Lei, N. Yan, Science 2019, 363, 1303.