Multiparametric Wide-Field Fluorescence Imaging via Polarization Modulation With Liquid Crystal Rotators
Funding: This work was supported by the National Major Scientific Instruments and Equipment Development Project under Grant No. 61827814 and the Ministry of Education Collaborative Project (B17023).
Wenshuai Li and Bin Xu contributed equally to the manuscript.
ABSTRACT
Fluorescence polarization imaging provides critical insights into molecular orientation, yet existing methods face limitations in parameter extraction efficiency and implementation complexity. This study proposes Wide-Field Multiparametric Fluorescence Imaging (WMPFI) using a Liquid Crystal Polarization Rotator (LCPR) for rapid polarization state modulation that generates pixel-level intensity modulations that encode fluorophore orientation. By analyzing fluorescence intensity variations under different polarization excitations, WMPFI reconstructs sample structural information through parametric imaging without requiring optical lock-in detection or computational reconstruction algorithms. Comparative experiments with Conventional Microscopy (CM) demonstrate WMPFI's enhanced sensitivity to anisotropic fluorescent dipole orientations, achieving superior contrast and resolution in imaging neural stem cells and skin tissues. The method's capacity for multi-parameter acquisition through polarization modulation offers a simplified approach for probing subcellular material exchange dynamics, with potential extensions to super-resolution imaging modalities.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.