A hybrid learning approach to better classify exhaled breath's infrared spectra: A noninvasive optical diagnosis for socially significant diseases
Corresponding Author
Igor Semenovich Golyak
Department of Physics, Bauman Moscow State Technical University, Moscow, Russia
Correspondence
Igor Semenovich Golyak, Department of Physics, Bauman Moscow State Technical University, 105005, Moscow, Russia.
Email: [email protected]
Search for more papers by this authorDmitriy Romanovich Anfimov
Department of Physics, Bauman Moscow State Technical University, Moscow, Russia
Search for more papers by this authorPavel Pavlovich Demkin
Department of Physics, Bauman Moscow State Technical University, Moscow, Russia
Search for more papers by this authorPavel Vyacheslavovich Berezhanskiy
Sechenov First Moscow State Medical University, Moscow, Russia
Search for more papers by this authorOlga Aleksandrovna Nebritova
Department of Physics, Bauman Moscow State Technical University, Moscow, Russia
Search for more papers by this authorAndrey Nikolaevich Morozov
Department of Physics, Bauman Moscow State Technical University, Moscow, Russia
Search for more papers by this authorIgor Leonidovich Fufurin
Department of Physics, Bauman Moscow State Technical University, Moscow, Russia
Search for more papers by this authorCorresponding Author
Igor Semenovich Golyak
Department of Physics, Bauman Moscow State Technical University, Moscow, Russia
Correspondence
Igor Semenovich Golyak, Department of Physics, Bauman Moscow State Technical University, 105005, Moscow, Russia.
Email: [email protected]
Search for more papers by this authorDmitriy Romanovich Anfimov
Department of Physics, Bauman Moscow State Technical University, Moscow, Russia
Search for more papers by this authorPavel Pavlovich Demkin
Department of Physics, Bauman Moscow State Technical University, Moscow, Russia
Search for more papers by this authorPavel Vyacheslavovich Berezhanskiy
Sechenov First Moscow State Medical University, Moscow, Russia
Search for more papers by this authorOlga Aleksandrovna Nebritova
Department of Physics, Bauman Moscow State Technical University, Moscow, Russia
Search for more papers by this authorAndrey Nikolaevich Morozov
Department of Physics, Bauman Moscow State Technical University, Moscow, Russia
Search for more papers by this authorIgor Leonidovich Fufurin
Department of Physics, Bauman Moscow State Technical University, Moscow, Russia
Search for more papers by this authorAbstract
Early diagnosis is crucial for effective treatment of socially significant diseases, such as type 1 diabetes mellitus (T1DM), pneumonia, and asthma. This study employs a diagnostic method based on infrared laser spectroscopy of human exhaled breath. The experimental setup comprises a quantum cascade laser, which emits in a pulsed mode with a peak power of up to 150 mW in the spectral range of 5.3–12.8 μm (780–1890 cm−1), and a Herriott multipass gas cell with a specific optical path length of 76 m. Using this setup, spectra of exhaled breath in the mid-infrared range were obtained from 165 volunteers, including healthy individuals, patients with T1DM, asthma, and pneumonia. The study proposes a hybrid approach for classifying these spectra, utilizing a variational autoencoder for dimensionality reduction and a support vector machine method for classification. The results demonstrate that the proposed hybrid approach outperforms other machine learning method combinations.
CONFLICT OF INTEREST STATEMENT
The authors declare no financial or commercial conflicts of interest exist.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1T. Grant, E. Croce, E. C. Matsui, Ann Allergy Asthma Immunol 2022, 128, 5.
- 2E. Uphoff, B. Cabieses, M. Pinart, M. Valdés, J. M. Antó, J. Wright, Europ Respirat J 2014, 46, 364.
- 3W. R. Rowley, C. Bezold, Y. Arikan, E. Byrne, S. Krohe, Popul Health Manag 2017, 20, 6.
- 4K. Dixit, S. Fardindoost, A. Ravishankara, N. Tasnim, M. Hoorfar, Biosensors 2021, 11, 476.
- 5P. V. Berezhanskiy, T. Gutyrchik, Y. Vekshina, N. Gutyrchik, N. Shapiev, T. Ushina, Med Pharmaceut J “Pulse” 2022, 24, 101.
- 6A.-H. Maitland-van der Zee, Vijverberg, hilvering, raaijmakers, lammers, koenderman, biologics: targets and therapy, Dove Medical Press, Macclesfield 2013, p. 199.
- 7N. A. Lerminiaux, A. D. Cameron, Canad J Microbiol 2019, 65, 34.
- 8G. Liu, M. Qin, Evid-Based Complem Alter Med 2022, 2022, 1.
- 9B. de Lacy Costello, A. Amann, H. Al-Kateb, C. Flynn, W. Filipiak, T. Khalid, D. Osborne, N. M. Ratcliffe, J Breath Res 2014, 8, 014001.
- 10A. Bajtarevic, C. Ager, M. Pienz, M. Klieber, K. Schwarz, M. Ligor, T. Ligor, W. Filipiak, H. Denz, M. Fiegl, W. Hilbe, W. Weiss, P. Lukas, H. Jamnig, M. Hackl, A. Haidenberger, B. Buszewski, W. Miekisch, J. Schubert, A. Amann, BMC Cancer 2009, 9, 1.
- 11L. D. J. Bos, P. J. Sterk, M. J. Schultz, PLoS Pathog. 2013, 9, e1003311.
- 12N. Alizadeh, H. Jamalabadi, F. Tavoli, IEEE Sens. J. 2020, 20, 5.
- 13V. Ruzsányi, M. P. Kalapos, J Breath Res 2017, 11, 024002.
- 14Y. Ohara, T. Ohara, K. Hashimoto, M. Hosoya, Fukushima J Med Sci 2020, 66, 78.
- 15L. Moschino, S. Zanconato, S. Bozzetto, E. Baraldi, S. Carraro, Paed Respira Rev 2015, 16, 205.
- 16S. Kharitonov, D. Yates, R. Robbins, P. Barnes, R. Logan-Sinclair, E. Shinebourne, The Lancet 1994, 343, 133.
- 17S. Svennson, A. Olin, M. Larstad, G. Ljungkvist, K. Toren, J. Chromatogr., B 2004, 809, 199.
- 18J. K. Schubert, W. P. E. Müller, A. Benzing, K. Geiger, Intensive Care Med. 1998, 24, 415.
- 19P. van Oort, S. de Bruin, H. Weda, H. Knobel, M. Schultz, L. Bos, Int. J. Mol. Sci. 2017, 18, 449.
- 20R. Vishinkin, H. Haick, Small 2015, 11, 6142.
- 21R. Su, T. Yang, X. Zhang, N. Li, X. Zhai, H. Chen, TrAC, Trends Anal. Chem. 2023, 158, 116823.
- 22E. V. Stepanov, P. V. Zyrianov, V. A. Miliaev, in ALT'98 selected papers on novel laser methods in medicine and biology (Eds: A. M. Prokhorov, V. I. Pustovoy, G. P. Kuz'min), SPIE, Bellingham 1999. https://doi.org/10.1117/12.353112
- 23R. Ghorbani, F. M. Schmidt, Opt. Express 2017, 25, 12743.
- 24A. Apolonski, K. S. Maiti, Appl. Opt. 2021, 60, 4217.
- 25I. Kononenko, Artif Intell Med 2001, 23, 89.
- 26A. V. Scherbakova, D. R. Anfimov, I. S. Golyak, E. R. Kareva, A. N. Morozov, P. P. Demkin, I. L. Fufurin, in Saratov fall meeting 2020: Optical and nanotechnologies for biology and medicine (Eds: V. V. Tuchin, E. A. Genina), SPIE, Bellingham 2021. https://doi.org/10.1117/12.2591085
- 27A. S. Tabalina, D. R. Anfimov, I. L. Fufurin, I. S. Golyak, in Biomedical spectroscopy, microscopy, and imaging (Eds: J. Popp, C. Gergely), SPIE, Bellingham 2020. https://doi.org/10.1117/12.2555042
- 28A. V. Shcherbakova, D. R. Anfimov, I. L. Fufurin, I. S. Golyak, I. A. Trapeznikova, E. R. Kareva, A. N. Morozov, Opt. Spectrosc. 2021, 129, 830.
- 29M. Shehab, L. Abualigah, Q. Shambour, M. A. Abu-Hashem, M. K. Y. Shambour, A. I. Alsalibi, A. H. Gandomi, Comput Biol Med 2022, 145, 105458.
- 30M. Li, Z.-H. Zhou, IEEE Trans Syst Man CybernetA Syst Humans 2007, 37, 1088.
- 31A. Choudhury, D. Gupta, A survey on medical diagnosis of diabetes using machine learning techniques, 67–78, Springer Singapore, ISBN 9789811312809. 2018.
- 32C. Wang, B. Sun, L. Guo, X. Wang, C. Ke, S. Liu, W. Zhao, S. Luo, Z. Guo, Y. Zhang, G. Xu, E. Li, Sci. Rep. 2014, 4, 1.
- 33Y. V. Kistenev, A. V. Borisov, D. A. Kuzmin, O. V. Penkova, N. Y. Kostyukova, A. A. Karapuzikov, J Biomed Opt 2017, 22, 017002.
- 34R. Luo, J. Popp, T. Bocklitz, Analytica 2022, 3, 287.
- 35C.-S. Ho, N. Jean, C. A. Hogan, L. Blackmon, S. S. Jeffrey, M. Holodniy, N. Banaei, A. A. E. Saleh, S. Ermon, J. Dionne, Nat. Commun. 2019, 10, 1.
- 36K. S. Maiti, S. Roy, R. Lampe, A. Apolonski, J Biophoton 2020, 13, 11.
10.1002/jbio.202000125 Google Scholar
- 37T. Khalid, R. Aggio, P. White, B. De Lacy Costello, R. Persad, H. Al-Kateb, P. Jones, C. S. Probert, N. Ratcliffe, PLoS One 2015, 10, e0143283.
- 38K. S. Maiti, E. Fill, F. Strittmatter, Y. Volz, R. Sroka, A. Apolonski, Sci. Rep. 2021, 11, 1.
- 39C. Morais, K. Lima, J. Braz. Chem. Soc. 2017, 29, 472.
- 40I. S. Golyak, I. L. Fufurin, E. R. Kareva, D. R. Anfimov, A. V. Scherbakova, A. N. Morozov, P. P. Demkin, in Saratov fall meeting 2020: Optical and nanotechnologies for biology and medicine (Eds: V. V. Tuchin, E. A. Genina), SPIE, Bellingham 2021. https://doi.org/10.1117/12.2590835
- 41I. Fufurin, P. Berezhanskiy, I. Golyak, D. Anfimov, E. Kareva, A. Scherbakova, P. Demkin, O. Nebritova, A. Morozov, Materials 2022, 15, 2984.
- 42I. L. Fufurin, D. R. Anfimov, E. R. Kareva, A. V. Scherbakova, P. P. Demkin, A. N. Morozov, I. S. Golyak, Opt Eng 2021, 60, 8.
10.1117/1.OE.60.8.082016 Google Scholar
- 43I. Golyak, E. Kareva, I. Fufurin, D. Anfimov, A. Scherbakova, A. Nebritova, P. Demkin, A. Morozov, Comput Opt 2022, 46, 4.
10.18287/2412-6179-CO-1058 Google Scholar
- 44I. V. Kochikov, A. N. Morozov, S. I. Svetlichnyi, I. L. Fufurin, Opt. Spectrosc. 2009, 106, 666.
- 45J. Lim, S. Ryu, J. W. Kim, W. Y. Kim, J Cheminform 2018, 10, 1.
- 46S. K. N. Portillo, J. K. Parejko, J. R. Vergara, A. J. Connolly, Astronom J 2020, 160, 45.
- 47X. Yang, C. Deng, F. Zheng, J. Yan, W. Liu, 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR), IEEE, New York 2019. https://doi.org/10.1109/CVPR.2019.00419
- 48J. Houston, F. G. Glavin, M. G. Madden, J. Chem. Inf. Model. 2020, 60, 1936.
- 49C. He, S. Zhu, X. Wu, J. Zhou, Y. Chen, X. Qian, J. Ye, ACS Omega 2022, 7, 10458.
- 50D. Misra, Mish: A self regularized non-monotonic activation function. 2019 https://arxiv.org/abs/1908.08681
- 51S. Zhao, J. Song, S. Ermon, Artif Intell 2019, 33, 5885.
- 52D. P. Kingma, M. Welling, Found Trends Mach Learn 2019, 12, 307.
- 53C.-W. Hsu, C.-J. Lin, IEEE Trans Neural Netw 2002, 13, 415.
- 54G. Cawley, N. Talbot, J Mach Learn Res 2010, 11, 2079.
- 55M. Feurer, F. Hutter, Hyperparameter optimization, Springer International Publishing, Cham 2019, p. 3.
10.1007/978-3-030-05318-5_1 Google Scholar
- 56C. C. Moor, J. C. Oppenheimer, G. Nakshbandi, J. G. Aerts, P. Brinkman, A.-H. Maitland-van der Zee, M. S. Wijsenbeek, Europ Respirat J 2020, 57, 2002042.
10.1183/13993003.02042-2020 Google Scholar
- 57A. K. Pavlou, N. Magan, J. M. Jones, J. Brown, P. Klatser, A. P. Turner, Biosens. Bioelectron. 2004, 20, 538.
- 58M. A. Talukder, M. A. Layek, M. Kazi, M. A. Uddin, S. Aryal, Comput Biol Med 2024, 168, 107789.
- 59J. Finkelstein, I. C. Jeong, Ann. N. Y. Acad. Sci. 2016, 1387, 153.
- 60T. Chen, T. Liu, T. Li, H. Zhao, Q. Chen, Clin. Chim. Acta 2021, 515, 61.
- 61A. T. Güntner, V. Koren, K. Chikkadi, M. Righettoni, S. E. Pratsinis, ACS Sens 2016, 1, 528.
- 62A. D. Wilson, M. Baietto, Sensors 2011, 11, 1105.
- 63R. F. Machado, D. Laskowski, O. Deffenderfer, T. Burch, S. Zheng, P. J. Mazzone, T. Mekhail, C. Jennings, J. K. Stoller, J. Pyle, J. Duncan, R. A. Dweik, S. C. Erzurum, Am J Respirat Crit Care Med 2005, 171, 1286.
- 64M. Ma, W. He, K. Zhao, L. Xue, S. Xia, B. Zhang, Front. Oncol. 2022, 12, 01.
- 65K. C. Persaud, Int J Lower Extrem Wounds 2005, 4, 50.
- 66F. S. Cikach, R. A. Dweik, Progr Cardiovasc Dis 2012, 55, 34.
- 67M. Maniscalco, D. Paris, D. J. Melck, A. Molino, M. Carone, P. Ruggeri, G. Caramori, A. Motta, Europ Respirat J 2018, 51, 1701825.
- 68V. Saasa, M. Beukes, Y. Lemmer, B. Mwakikunga, Diagnostics 2019, 9, 224.
- 69S. Y. Lai, O. F. Deffenderfer, W. Hanson, M. P. Phillips, E. R. Thaler, The Laryngoscope 2002, 112, 975.
- 70T. Hibbard, A. J. Killard, Crit. Rev. Anal. Chem. 2011, 41, 21.
- 71A. Held, D. Henning, C. Jiang, C. Hoeschen, T. Frodl, Molecules 2023, 28, 4385.
- 72B. M. Ross, R. Maxwell, I. Glen, Progr Neuro-Psychopharmacol Biol Psychiatry 2011, 35, 446.
- 73Y. Li, X. Wei, Y. Zhou, J. Wang, R. You, Microsyst Nanoeng 2023, 9, 1.
- 74E. V. Stepanov, V. T. Ivashkin, Laser Phys. 2022, 32, 084005.
- 75K. S. Maiti, E. Fill, F. Strittmatter, Y. Volz, R. Sroka, A. Apolonski, Spectrochim. Acta, Part A 2024, 304, 123266.
- 76D. C. Caixeta, M. G. Carneiro, R. Rodrigues, D. C. T. Alves, L. R. Goulart, T. M. Cunha, F. S. Espindola, R. Vitorino, R. Sabino-Silva, Diagnostics 2023, 13, 1396.
- 77L. Bellantuono, R. Tommasi, E. Pantaleo, M. Verri, N. Amoroso, P. Crucitti, M. Di Gioacchino, F. Longo, A. Monaco, A. M. Naciu, A. Palermo, C. Taffon, S. Tangaro, A. Crescenzi, A. Sodo, R. Bellotti, Sci. Rep. 2023, 13, 1.
- 78M. T. Ribeiro, S. Singh, C. Guestrin, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ‘16. ACM. 2016 https://doi.org/10.1145/2939672.2939778
10.1145/2939672.2939778 Google Scholar
- 79C. Wang, T. Ko, C. Hsu, Plasma Processes Polym. 2021, 18, 12.
- 80F. Akulich, H. Anahideh, M. Sheyyab, D. Ambre, Chemom. Intell. Lab. Syst. 2022, 225, 104572.