Photobiomodulation leads to enhanced radiosensitivity through induction of apoptosis and autophagy in human cervical cancer cells
Gholamreza Esmaeeli Djavid
Medical Laser Research Center, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
Search for more papers by this authorBahareh Bigdeli
Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
Search for more papers by this authorCorresponding Author
Bahram Goliaei
Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
Search for more papers by this authorAlireza Nikoofar
Radiotherapy Department, Firoozgar Hospital, Iran University of Medical Sciences., Tehran, Iran
Search for more papers by this authorMichael R Hamblin
Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA, Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
Search for more papers by this authorGholamreza Esmaeeli Djavid
Medical Laser Research Center, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
Search for more papers by this authorBahareh Bigdeli
Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
Search for more papers by this authorCorresponding Author
Bahram Goliaei
Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
Search for more papers by this authorAlireza Nikoofar
Radiotherapy Department, Firoozgar Hospital, Iran University of Medical Sciences., Tehran, Iran
Search for more papers by this authorMichael R Hamblin
Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA, Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
Search for more papers by this authorAbstract
The radiomodulatory effect of photobiomodulation (PBM) has recently been studied in cancer cells. The aim of this study was to investigate cellular mechanisms involved in the X-ray radiosensitivity of HeLa cells pre-exposed to PBM. HeLa cells were irradiated with 685 nm laser at different energy densities prior to X-ray ionizing radiation. After irradiation, clonogenic cell survival, cell death due to apoptosis and autophagy were determined. Levels of intracellular reactive oxygen species (ROS), DNA damage and, cell cycle distribution after PBM were measured. PBM at different energy densities (5–20 J/cm2) was not cytotoxic. However, HeLa cells pre-exposed to 20 J/cm2 showed enhanced inhibition of colony formation following ionizing radiation. Enhanced radiosensitivity was due to increased oxidative stress, DNA damage, and radiation-induced apoptosis and autophagy. These results suggest that 685 nm PBM at a higher energy density could possibly be a promising radiosensitizing agent in cervical cancer, to decrease the radiation dose delivered, and therefore prevent the side-effects that are associated with cancer radiotherapy.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
jbio201700004-sup-0001-author-biographies.pdf174.8 KB | Supplementary |
jbio201700004-sup-0001-misc_information.pdf180.2 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. L. Franco, N. F. Schlecht and D. Saslow, Cancer J. 9, 348–359 (2003).
- 2T. J. Kim, J. W. Lee, S. Y. Song, J. J. Choi, C. H. Choi, B. G. Kim, J. H. Lee and D. S. Bae, Br. J. Cancer. 94, 1678–1682 (2006).
- 3E. Y. Huang, Y. F. Chen, Y. M. Chen, I. H. Lin, C. C. Wang, W. H. Su, P. C. Chuang and K. D. Yang, Cell Death Dis. 3, e251 (2012).
- 4E. R. Novak, Obstet. Gynecol. 4, 251–259 (1954).
- 5M. Karin, Nature 441, 431–436 (2006).
- 6F. Paris, Z. Fuks, A. Kang, P. Capodieci, G. Juan, D. Ehleiter, A. Haimovitz-Friedman, C. Cordon-Cardo and R. Kolesnick, Science 293, 293–297 (2001).
- 7K. H. Vousden and C. Prives, Cell 137, 413–431 (2009).
- 8R. Kulkarni, R. A. Thomas and J. D. Tucker, Environ. Mol. Mutagen. 52, 229–237 (2011).
- 9C. J. Bakkenist and M. B. Kastan, Cell 118, 9–17 (2004).
- 10I. Ward and J. Chen, Curr. Top. Dev. Biol. 63, 1–35 (2004).
- 11A. Gafter-Gvili, M. Herman, Y. Ori, A. Korzets, A. Chagnac, B. Zingerman, B. Rozen-Zvi, U. Gafter and T. Malachi, Leuk. Res. 35, 219–225 (2011).
- 12Y. Y. Huang, S. K. Sharma, J. Carroll and M. R. Hamblin, Dose Response 9, 602–618 (2011).
- 13S. Wu, D. Xing, X. Gao and W. R. Chen, J. Cell. Physiol. 218, 603–611 (2009).
- 14L. Huang, S. Wu and D. Xing, J. Cell. Physio.. 226, 588–601 (2011).
- 15J. Chu, S. Wu and D. Xing, Cancer Lett. 297, 207–219 (2010).
- 16W. P. Hu, J. J. Wang, C. L. Yu, C. C. Lan, G. S. Chen and H. S. Yu, J. Invest. Dermatol. 127, 2048–2057 (2007).
- 17N. Ben-Dov, G. Shefer, A. Irintchev, A. Wernig, U. Oron and O. Halevy, Biochim. Biophys. Acta 1448, 372–380 (1999).
- 18J. Zhang, D. Xing and X. Gao, J. Cell. Physiol. 217, 518–528 (2008).
- 19X. Sun, S. Wu and D. Xing, FEBS J. 277, 4789–4802 (2010).
- 20N. Grossman, N. Schneid, H. Reuveni, S. Halevy and R. Lubart, Lasers Surg. Med. 22, 212–218 (1998).
10.1002/(SICI)1096-9101(1998)22:4<212::AID-LSM5>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 21F. F. Sperandio, A. Simoes, L. Correa, A. C. Aranha, F. S. Giudice, M. R. Hamblin and S. C. Sousa, J. Biophotonics 8, 795–803 (2015).
- 22S. Wu, D. Xing, F. Wang, T. Chen and W. R. Chen, J. Biomed. Opt. 12, 064015 (2007).
- 23G. Shefer, I. Barash, U. Oron and O. Halevy, Biochim. Biophys. Acta. 1593, 131–139 (2003).
- 24L. Zhang, Y. Zhang and D. Xing, J. Cell. Physiol. 224, 218–228 (2010).
- 25A. C. Chen, P. R. Arany, Y. Y. Huang, E. M. Tomkinson, S. K. Sharma, G. B. Kharkwal, T. Saleem, D. Mooney, F. E. Yull, T. S. Blackwell and M. R. Hamblin, PloS one 6, e22453 (2011).
- 26D. B. Zorov, M. Juhaszova and S. J. Sollott, Physiol. Rev. 94, 909–950 (2014).
- 27G. E. Djavid, B. Goliaie and A. Nikoofar, Photomed. Laser Surg. 33, 452–459 (2015).
- 28C. Ramos Silva, F. V. Cabral, C. F. de Camargo, S. C. Nunez, T. Mateus Yoshimura, A. C. de Lima Luna, D. A. Maria and M. S. Ribeiro, J. Biophotonics 9, 1157–1166 (2016).
- 29A. Barasch, J. Raber-Durlacher, J. B. Epstein and J. Carroll, Support Care Cancer 24, 2497–2501 (2016).
- 30T. J. Liegler, W. Hyun, T. S. Yen and D. P. Stites, Clin. Diagn. Lab. Immunol. 2, 369–376 (1995).
- 31D. Ribble, N. B. Goldstein, D. A. Norris and Y. G. Shellman, BMC Biotechnol. 5, 12 (2005).
- 32P. L. Olive and J. P. Banath, Nat. Protoc. 1, 23–29 (2006).
- 33G. A. Callaghan, C. Riordan, W. S. Gilmore, I. A. McIntyre, J. M. Allen and B. M. Hannigan, Lasers Surg. Med. 19, 201–206 (1996).
- 34M. Eichler, R. Lavi, H. Friedmann, A. Shainberg and R. Lubart, Photomed. Laser Surg. 25, 170–174 (2007).
- 35R. Lavi, A. Shainberg, H. Friedmann, V. Shneyvays, O. Rickover, M. Eichler, D. Kaplan and R. Lubart, J. Biol. Chem. 278, 40917–40922 (2003).
- 36Y. Miura, J Radiat Res. 45, 357–372 (2004).
- 37R. Roots, G. Kraft and E. Gosschalk, Int. J. Radiat. Oncol. Biol. Phys. 11, 259–265 (1985).
- 38A. Rosenberg and S. Knox, Int. J. Radiat. Oncol. Biol. Phys. 64, 343–354 (2006).
- 39N. Houreld and H. Abrahamse, Photomed. Laser Surg. 25, 78–84 (2007).
- 40D. R. Pilch, O. A. Sedelnikova, C. Redon, A. Celeste, A. Nussenzweig and W. M. Bonner, Biochem. Cell Biol. 81, 123–129 (2003).
- 41I. Khan, E. Tang and P. Arany, Sci. Rep. 5, 10581 (2015).
- 42D. Eriksson and T. Stigbrand, Tumour Biol. 31, 363–372 (2010).
- 43R. A. Panganiban, A. L. Snow and R. M. Day, Int. J. Mol. Sci. 14, 15931–15958 (2013).
- 44A. Ghorai, N. P. Bhattacharyya, A. Sarma and U. Ghosh, Scientifica (Cairo). 2014, 438030 (2014).
- 45M. Chaurasia, A. N. Bhatt, A. Das, B. S. Dwarakanath and K. Sharma, Free Radic. Res. 50, 273–290 (2016).
- 46D. A. Gewirtz, M. L. Hilliker and E. N. Wilson, Radiother. Oncol. 92, 323–328 (2009).
- 47W. Zhuang, Z. Qin and Z. Liang, Acta Biochim. Biophys. Sin. (Shanghai). 41, 341–351 (2009).
- 48J. Denekamp, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 49, 357–380 (1986).
- 49A. V. Gudkov and E. A. Komarova, J. Clin. Invest. 120, 2270–2273 (2010).
- 50H. Hochegger, S. Takeda and T. Hunt, Nat. Rev. Mol. Cell Biol. 9, 910–916 (2008).
- 51J. A. Zecha, J. E. Raber-Durlacher, R. G. Nair, J. B. Epstein, S. Elad, M. R. Hamblin, A. Barasch, C. A. Migliorati, D. M. Milstein, M. T. Genot, L. Lansaat, R. van der Brink, J. Arnabat-Dominguez, L. van der Molen, I. Jacobi, J. van Diessen, J. de Lange, L. E. Smeele, M. M. Schubert and R. J. Bensadoun, Support Care Cancer (2016).
- 52J. A. Zecha, J. E. Raber-Durlacher, R. G. Nair, J. B. Epstein, S. T. Sonis, S. Elad, M. R. Hamblin, A. Barasch, C. A. Migliorati, D. M. Milstein, M. T. Genot, L. Lansaat, R. van der Brink, J. Arnabat-Dominguez, L. van der Molen, I. Jacobi, J. van Diessen, J. de Lange, L. E. Smeele, M. M. Schubert and R. J. Bensadoun, Support Care Cancer (2016).