Increasing temperature and flow management alter mercury dynamics in East Fork Poplar Creek
Corresponding Author
Scott C. Brooks
Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Correspondence
Scott C. Brooks, Environmental Science Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6038, Oak Ridge, TN 37831-6038, USA.
Email: [email protected]
Search for more papers by this authorCarrie L. Miller
Theoretical and Applied Science, Ramapo College of New Jersey, Mahwah, New Jersey, USA
Search for more papers by this authorAmi L. Riscassi
Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
Search for more papers by this authorKenneth A. Lowe
Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Search for more papers by this authorJohnbull O. Dickson
Applied Research Center, Florida International University, Miami, Florida, USA
Search for more papers by this authorGrace E. Schwartz
Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Department of Chemistry, Wofford College, Spartanburg, South Carolina, USA
Search for more papers by this authorCorresponding Author
Scott C. Brooks
Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Correspondence
Scott C. Brooks, Environmental Science Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6038, Oak Ridge, TN 37831-6038, USA.
Email: [email protected]
Search for more papers by this authorCarrie L. Miller
Theoretical and Applied Science, Ramapo College of New Jersey, Mahwah, New Jersey, USA
Search for more papers by this authorAmi L. Riscassi
Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
Search for more papers by this authorKenneth A. Lowe
Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Search for more papers by this authorJohnbull O. Dickson
Applied Research Center, Florida International University, Miami, Florida, USA
Search for more papers by this authorGrace E. Schwartz
Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Department of Chemistry, Wofford College, Spartanburg, South Carolina, USA
Search for more papers by this authorAbstract
East Fork Poplar Creek (EFPC) is a mercury (Hg) contaminated creek in east Tennessee, USA. Stream restoration activities included the initiation of a flow management programme in 1996 in which water from a nearby lake was pumped to the head of the creek. We conducted regular water sampling for 2 years along the length of EFPC during active flow management and for 5 years after flow management stopped. Total Hg and total monomethylmercury (MMHg) concentration and flux decreased in the uppermost reaches of EFPC that were closest to the point of water addition. Most water quality parameters, including DOC concentration, remained unchanged after flow management termination. Nevertheless, SUVA254, a measure of dissolved organic matter (DOM) composition, increased and coincided with increased dissolved Hg (HgD) concentration and flux and decreased Hg solid-water partitioning coefficients throughout EFPC. Higher SUVA254 and HgD concentration have potential implications for bioavailability and MMHg production. Total and dissolved MMHg concentrations increased in lower reaches of EFPC after the end of flow management and these increases were most pronounced during spring and early summer when biota are more susceptible to exposure and uptake. A general warming trend in the creek after active flow management ended likely acted in concert with higher HgD concentration to promote higher MMHg concentration. Total and dissolved MMHg concentrations were positively correlated with water temperature above a threshold value of 10°C. Concentration changes for Hg and MMHg could not be accounted for by changes in creek discharge that accompanied the cessation of flow management. In addition to the changing DOM composition in-stream, other watershed-scale factors likely contributed to the observed patterns, as these changes occurred over months rather than instantaneously after flow management stopped. Nevertheless, similar changes in MMHg have not been observed in a tributary to EFPC.
Open Research
DATA AVAILABILITY STATEMENT
The water quality data and accompanying metadata are publicly available at https://msfa.ornl.gov/data/pages/MCI538.html. The monitoring program is ongoing and evolving. For additional information please contact the corresponding author at [email protected].
Supporting Information
Filename | Description |
---|---|
hyp14344-sup-0001-SupInfo.docxWord 2007 document , 4.6 MB | Data S1.Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Achá, D., Hintelmann, H., & Yee, J. (2011). Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region. Chemosphere, 82(6), 911–916.
- Babiarz, C. L., Hurley, J. P., Benoit, J. M., Shafer, M. M., Andren, A. W., & Webb, D. A. (1998). Seasonal influences on partitioning and transport of total and methylmercury in rivers from contrasting watersheds. Biogeochemistry, 41(3), 237–257.
- Back, R. C., Hurley, J. P., & Rolfhus, K. R. (2002). Watershed influences on the transport, fate and bioavailability of mercury in Lake Superior: Field measurements and modelling approaches. Lakes & Reservoirs: Science, Policy and Management for Sustainable Use, 7(3), 201–206. https://doi.org/10.1046/j.1440-1770.2002.00188.x
- Balogh, S. J., Huang, Y., Offerman, H. J., Meyer, M. L., & Johnson, D. K. (2003). Methylmercury in rivers draining cultivated watersheds. Science of the Total Environment, 304(1), 305–313. https://doi.org/10.1016/S0048-9697(02)00577-6
- Beckers, F., & Rinklebe, J. (2017). Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47(9), 693–794. https://doi.org/10.1080/10643389.2017.1326277
- Brigham, M. E., Wentz, D. A., Aiken, G. R., & Krabbenhoft, D. P. (2009). Mercury cycling in stream ecosystems. 1. Water column chemistry and transport. Environmental Science & Technology, 43(8), 2720–2725. https://doi.org/10.1021/es802694n
- Brooks, S., Eller, V., Dickson, J. O., Earles, J., Lowe, K., Mehlhorn, T., Olsen, T. A., DeRolph, C., Watson, D. B., Phillips, D., & Peterson, M. (2017). Mercury content of sediments in East Fork Poplar Creek: Current assessment and past trends. ORNL/TM-2016/578. Retrieved from Oak Ridge National Laboratory. https://doi.org/10.2172/1338545:
10.2172/1338545 Google Scholar
- Brooks, S. C., Lowe, K. A., Mehlhorn, T. L., Olsen, T. A., Yin, X., Fortner, A. M., & Peterson, M. J. (2018). Intraday water quality patterns in East Fork Poplar Creek with an emphasis on mercury and monomethylmercury. ORNL/TM-2018/812. Retrieved from Oak Ridge National Laboratory. https://doi.org/10.2172/1437608:
10.2172/1439147 Google Scholar
- Brooks, S. C., Riscassi, A. L., & Lowe, K. A. (2021). Stream discharge and water quality data for East Fork Poplar Creek beginning 2012. Hydrological Processes, 35(3), e14103. https://doi.org/10.1002/hyp.14103
- Brooks, S. C., & Southworth, G. R. (2011). History of mercury use and environmental contamination at the Oak Ridge Y-12 plant. Environmental Pollution, 159(1), 219–228. https://doi.org/10.1016/j.envpol.2010.09.009
- Burns, D. A., Aiken, G. R., Bradley, P. M., Journey, C. A., & Schelker, J. (2013). Specific ultra-violet absorbance as an indicator of mercury sources in an Adirondack River basin. Biogeochemistry, 113(1), 451–466. https://doi.org/10.1007/s10533-012-9773-5
- Chasar, L. C., Scudder, B. C., Stewart, A. R., Bell, A. H., & Aiken, G. R. (2009). Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation. Environmental Science & Technology, 43(8), 2733–2739. https://doi.org/10.1021/es8027567
- Chin, Y.-P., Aiken, G., & O'Loughlin, E. (1994). Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environmental Science & Technology, 28(11), 1853–1858. https://doi.org/10.1021/es00060a015
- Cumberland, S. A., Douglas, G., Grice, K., & Moreau, J. W. (2016). Uranium mobility in organic matter-rich sediments: A review of geological and geochemical processes. Earth-Science Reviews, 159, 160–185. https://doi.org/10.1016/j.earscirev.2016.05.010
- Demers, J. D., Blum, J. D., Brooks, S. C., Donovan, P. M., Riscassi, A. L., Miller, C. L., Zheng, W., & Gu, B. (2018). Hg isotopes reveal in-stream processing and legacy inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA. Environmental Science: Processes & Impacts, 20(4), 686–707. https://doi.org/10.1039/C7EM00538E
- Deonarine, A., & Hsu-Kim, H. (2009). Precipitation of mercuric sulfide nanoparticles in NOM-containing water: Implications for the natural environment. Environmental Science & Technology, 43(7), 2368–2373. https://doi.org/10.1021/es803130h
- Desrosiers, M., Planas, D., & Mucci, A. (2006). Mercury methylation in the epilithon of boreal shield aquatic ecosystems. Environmental Science & Technology, 40(5), 1540–1546. https://doi.org/10.1021/es0508828
- Dickson, J. O., Mayes, M. A., Brooks, S. C., Mehlhorn, T. L., Lowe, K. A., Earles, J. K., Goñez-Rodriguez, L., Watson, D. B., & Peterson, M. J. (2019). Source relationships between streambank soils and streambed sediments in a mercury-contaminated stream. Journal of Soils and Sediments, 19(4), 2007–2019. https://doi.org/10.1007/s11368-018-2183-0
- Dittman, J. A., Shanley, J. B., Driscoll, C. T., Aiken, G. R., Chalmers, A. T., & Towse, J. E. (2009). Ultraviolet absorbance as a proxy for total dissolved mercury in streams. Environmental Pollution, 157(6), 1953–1956.
- Dittman, J. A., Shanley, J. B., Driscoll, C. T., Aiken, G. R., Chalmers, A. T., Towse, J. E., & Selvendiran, P. (2010). Mercury dynamics in relation to dissolved organic carbon concentration and quality during high flow events in three northeastern US streams. Water Resources Research, 46(7), W07522. https://doi.org/10.1029/2009wr008351
- Dong, W. M., Bian, Y. R., Liang, L. Y., & Gu, B. H. (2011). Binding constants of mercury and dissolved organic matter determined by a modified ion exchange technique. Environmental Science & Technology, 45(8), 3576–3583. https://doi.org/10.1021/es104207g
- Dong, W. M., Liang, L. Y., Brooks, S., Southworth, G., & Gu, B. H. (2010). Roles of dissolved organic matter in the speciation of mercury and methylmercury in a contaminated ecosystem in Oak Ridge, Tennessee. Environmental Chemistry, 7(1), 94–102.
- Donovan, P. M., Blum, J. D., Demers, J. D., Gu, B. H., Brooks, S. C., & Peryam, J. (2014). Identification of multiple mercury sources to stream sediments near Oak Ridge, TN, USA. Environmental Science & Technology, 48(7), 3666–3674. https://doi.org/10.1021/es4046549
- Eckley, C. S., Eagles-Smith, C., Tate, M. T., Kowalski, B., Danehy, R., Johnson, S. L., & Krabbenhoft, D. P. (2018). Stream mercury export in response to contemporary timber harvesting methods (Pacific Coastal Mountains, Oregon, USA). Environmental Science and Technology, 52, 1971–1980. https://doi.org/10.1021/acs.est.7b05197
- Flanders, J. R., Turner, R. R., Morrison, T., Jensen, R., Pizzuto, J., Skalak, K., & Stahl, R. (2010). Distribution, behavior, and transport of inorganic and methylmercury in a high gradient stream. Applied Geochemistry, 25(11), 1756–1769.
- Fleck, J. A., Downing, B. D., Saraceno, J. F., Gill, G., Stephenson, M., Alpers, C. N. & Bergamaschi, B. A. (2009). Diurnal trends in methylmercury concentration and organic matter photo-reactivity in agricultural wetlands of the Yolo bypass, California. Paper presented at the Geological Society of America Annual Meeting, 18–21 October 2009, Portland, OR.
- Gammons, C. H., Milodragovich, L., & Belanger-Woods, J. (2007). Influence of diurnal cycles on metal concentrations and loads in streams draining abandoned mine lands: An example from high Ore Creek, Montana. Environmental Geology, 53(3), 611–622. https://doi.org/10.1007/s00254-007-0676-z
- Graham, A. M., Aiken, G. R., & Gilmour, C. C. (2013). Effect of dissolved organic matter source and character on microbial Hg methylation in Hg–S–DOM solutions. Environmental Science & Technology, 47(11), 5746–5754. https://doi.org/10.1021/es400414a
- Gu, B., Mishra, B., Miller, C., Wang, W., Lai, B., Brooks, S. C., Kemner, K. M., & Liang, L. (2014). X-ray fluorescence mapping of mercury on suspended mineral particles and diatoms in a contaminated freshwater system. Biogeosciences, 11(18), 5259–5267. https://doi.org/10.5194/bg-11-5259-2014
- Hamelin, S., Planas, D., & Amyot, M. (2015). Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada). Science of the Total Environment, 512–513(0), 464–471. https://doi.org/10.1016/j.scitotenv.2015.01.040
- Hamelin, S. p., Amyot, M., Barkay, T., Wang, Y., & Planas, D. (2011). Methanogens: Principal methylators of mercury in lake periphyton. Environmental Science & Technology, 45(18), 7693–7700. https://doi.org/10.1021/es2010072
- Hintelmann, H., & Ogrinc, N. (2003). Determination of stable mercury isotopes by ICP/MS and their application in environmental studies. In Y. Cai & O. C. Braids (Eds.), Biogeochemistry of environmentally important trace elements (Vol. 835, pp. 321–338). Amer Chemical Soc.
- Hsu-Kim, H., Kucharzyk, K. H., Zhang, T., & Deshusses, M. A. (2013). Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environmental Science & Technology, 47(6), 2441–2456. https://doi.org/10.1021/es304370g
- Huguet, L., Castelle, S., Schafer, J., Blanc, G., Maury-Brachet, R., Reynouard, C., & Jorand, F. (2010). Mercury methylation rates of biofilm and plankton microorganisms from a hydroelectric reservoir in French Guiana. Science of the Total Environment, 408(6), 1338–1348. https://doi.org/10.1016/j.scitotenv.2009.10.058
- Hurley, J. P., Benoit, J. M., Babiarz, C. L., Shafer, M. M., Andren, A. W., Sullivan, J. R., Hammond, R., & Webb, D. A. (1995). Influences of watershed characteristics on mercury levels in Wisconsin rivers. Environmental Science & Technology, 29(7), 1867–1875.
- Hurley, J. P., Cowell, S. E., Shafer, M. M., & Hughes, P. E. (1998). Partitioning and transport of total and methyl mercury in the lower Fox River, Wisconsin. Environmental Science & Technology, 32(10), 1424–1432.
- Johs, A., Eller, V. A., Mehlhorn, T. L., Brooks, S. C., Harper, D. P., Mayes, M. A., Pierce, E. M., & Peterson, M. J. (2019). Dissolved organic matter reduces the effectiveness of sorbents for mercury removal. Science of the Total Environment, 690, 410–416. https://doi.org/10.1016/j.scitotenv.2019.07.001
- Journey, C. A., Burns, D. A., Riva-Murray, K., Brigham, M. E., Button, D. T., Feaster, T. D., Petkewich, M. D. & Bradley, P. M. (2012). Fluvial transport of mercury, organic carbon, suspended sediment, and selected major ions in contrasting stream basins in South Carolina and New York, October 2004 to September 2009 (US Geological Survey Scientific Investigations Report 2012–5173).
- Kirchner, J. W., Austin, C. M., Myers, A., & Whyte, D. C. (2011). Quantifying remediation effectiveness under variable external forcing using contaminant rating curves. Environmental Science & Technology, 45(18), 7874–7881. https://doi.org/10.1021/es2014874
- Kocman, D., Horvat, M., Pirrone, N., & Cinnirella, S. (2013). Contribution of contaminated sites to the global mercury budget. Environmental Research, 125, 160–170. https://doi.org/10.1016/j.envres.2012.12.011
- Krabbenhoft, D. P., Benoit, J. M., Babiarz, C. L., Hurley, J. P., & Andren, A. W. (1995). Mercury cycling in the Allequash Creek watershed, northern Wisconsin. Water, Air, and Soil Pollution, 80(1), 425–433. https://doi.org/10.1007/BF01189692
- Lavoie, R. A., Amyot, M., & Lapierre, J.-F. (2019). Global meta-analysis on the relationship between mercury and dissolved organic carbon in freshwater environments. Journal of Geophysical Research – Biogeosciences, 124(6), 1508–1523. https://doi.org/10.1029/2018JG004896
- Lazaro, W. L., Diez, S., da Silva, C. J., Ignacio, A. R. A., & Guimaraes, J. R. D. (2018). Seasonal changes in peryphytic microbial metabolism determining mercury methylation in a tropical wetland. Science of the Total Environment, 627, 1345–1352. https://doi.org/10.1016/j.scitotenv.2018.01.186
- Loar, J. M., Stewart, A. J., & Smith, J. G. (2011). Twenty-five years of ecological recovery of East Fork Poplar Creek: Review of environmental problems and remedial actions. Environmental Management, 47(6), 1010–1020. https://doi.org/10.1007/s00267-011-9625-4
- Mazrui, N. M., Jonsson, S., Thota, S., Zhao, J., & Mason, R. P. (2016). Enhanced availability of mercury bound to dissolved organic matter for methylation in marine sediments. Geochimica et Cosmochimica Acta, 194, 153–162. https://doi.org/10.1016/j.gca.2016.08.019
- Miller, C. L., Liang, L. Y., & Gu, B. H. (2012). Competitive ligand exchange reveals time dependent changes in the reactivity of Hg-dissolved organic matter complexes. Environmental Chemistry, 9(6), 495–501. https://doi.org/10.1071/en12096
- Miller, C. L., Mason, R. P., Gilmour, C. C., & Heyes, A. (2007). Influence of dissolved organic matter on the complexation of mercury under sulfidic conditions. Environmental Toxicology and Chemistry, 26(4), 624–633.
- Miller, C. L., Southworth, G. R., Brooks, S. C., Liang, L., & Gu, B. (2009). Kinetic controls on the complexation between mercury and dissolved organic matter in a contaminated environment. Environmental Science & Technology, 43(22), 8548–8553.
- Mitchell, C. P. J., & Gilmour, C. C. (2008). Methylmercury production in a Chesapeake Bay salt marsh. Journal of Geophysical Research, 113, G00C04. https://doi.org/10.1029/2008JG000765
- Mulholland, P. J., Best, G. R., Coutant, C. C., Hornberger, G. M., Meyer, J. L., Robinson, P. J., Stenberg, J. R., Turner, R. E., Vera-Herrera, F., & Wetzel, R. G. (1997). Effects of climate change on freshwater ecosystems of the South-Eastern United States and the Gulf coast of Mexico. Hydrological Processes, 11(8), 949–970.
- Naftz, D. L., Cederberg, J. R., Krabbenhoft, D. P., Beisner, K. R., Whitehead, J., & Gardberg, J. (2011). Diurnal trends in methylmercury concentration in a wetland adjacent to Great Salt Lake, Utah, USA. Chemical Geology, 283(1–2), 78–86. https://doi.org/10.1016/j.chemgeo.2011.02.005
- Ndu, U., Christensen, G. A., Rivera, N. A., Gionfriddo, C. M., Deshusses, M. A., Elias, D. A., & Hsu-Kim, H. (2018). Quantification of mercury bioavailability for methylation using diffusive gradient in thin-film samplers. Environmental Science & Technology, 52(15), 8521–8529. https://doi.org/10.1021/acs.est.8b00647
- Nimick, D. A., McCleskey, B. R., Gammons, C. H., Cleasby, T. E., & Parker, S. R. (2007). Diel mercury-concentration variations in streams affected by mining and geothermal discharge. Science of the Total Environment, 373(1), 344–355. https://doi.org/10.1016/j.scitotenv.2006.11.008
- Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., & Selin, N. E. (2018). A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio, 47(2), 116–140. https://doi.org/10.1007/s13280-017-1004-9
- Olsen, T. A., Brandt, C. C., & Brooks, S. C. (2016). Periphyton biofilms influence net methylmercury production in an industrially contaminated system. Environmental Science & Technology, 50(20), 10843–10850. https://doi.org/10.1021/acs.est.6b01538
- Oswald, C. J., & Branfireun, B. A. (2014). Antecedent moisture conditions control mercury and dissolved organic carbon concentration dynamics in a boreal headwater catchment. Water Resources Research, 50(8), 6610–6627. https://doi.org/10.1002/2013wr014736
- Parr, P. D., & Hughes, J. F. (2006). Oak Ridge reservation: Physical characteristics and natural resources. ORNL/TM-2006/110. Retrieved from Oak Ridge National Laboratory. http://www.osti.gov/bridge
- Qian, Y., Yin, X., Lin, H., Rao, B., Brooks, S. C., Liang, L., & Gu, B. (2014). Why dissolved organic matter enhances photodegradation of methylmercury. Environmental Science & Technology Letters, 1(10), 426–431. https://doi.org/10.1021/ez500254z
- R Core Team (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria. R Foundation for Statistical Computing. Retrieved from: https://www.R-project.org/.
- Riscassi, A., Miller, C., & Brooks, S. (2016). Seasonal and flow-driven dynamics of particulate and dissolved mercury and methylmercury in a stream impacted by an industrial mercury source. Environmental Toxicology and Chemistry, 35(6), 1386–1400. https://doi.org/10.1002/etc.3310
- Riscassi, A., Miller, C. L., & Brooks, S. C. (2014). Impact of collection container material and holding times on sample integrity for mercury and methylmercury in water. Limnology and Oceanography: Methods, 12, 407–420. https://doi.org/10.4319/lom.2014.12.407
- Sankar, M. S., Dash, P., Lu, Y., Paul, V., Mercer, A. E., Arslan, Z., Varco, J. J., & Rodgers, J. C. (2019). Dissolved organic matter and trace element variability in a blackwater-fed bay following precipitation. Estuarine, Coastal and Shelf Science, 231, 106452. https://doi.org/10.1016/j.ecss.2019.106452
- Schuster, P. F., Shanley, J. B., Marvin-Dipasquale, M., Reddy, M. M., Aiken, G. R., Roth, D. A., Taylor, H. E., Krabbenhoft, D. P., & DeWild, J. F. (2008). Mercury and organic carbon dynamics during runoff episodes from a northeastern USA watershed. Water, Air, and Soil Pollution, 187(1), 89–108. https://doi.org/10.1007/s11270-007-9500-3
- Schwartz, G. E., Olsen, T. A., Muller, K. A., & Brooks, S. C. (2019). Ecosystem controls on methylmercury production by periphyton biofilms in a contaminated stream: Implications for predictive modeling. Environmental Toxicology and Chemistry, 38(11), 2426–2435. https://doi.org/10.1002/etc.4551
- Scudder, B. C., Chasar, L. C., Wentz, D. A., Bauch, N. J., Brigham, M. E., Moran, P. W., & Krabbenhoft, D. P. (2009). Mercury in fish, bed sediment, and water from streams across the United States, 1998–2005.U.S. Geological Survey.
10.3133/sir20095109 Google Scholar
- Selin, N. E. (2009). Global biogeochemical cycling of mercury: A review. Annual Review of Environment and Resources, 34, 43–63. https://doi.org/10.1146/annurev.environ.051308.084314
- Sellers, P., Kelly, C. A., Rudd, J. W. M., & MacHutchon, A. R. (1996). Photodegradation of methylmercury in lakes. Nature, 380(6576), 694–697. https://doi.org/10.1038/380694a0
- Shiller, A. M., Duan, S., van Erp, P., & Bianchi, T. S. (2006). Photo-oxidation of dissolved organic matter in river water and its effect on trace element speciation. Limnology and Oceanography, 51(4), 1716–1728. https://doi.org/10.4319/lo.2006.51.4.1716
- Slowey, A. J. (2010). Rate of formation and dissolution of mercury sulfide nanoparticles: The dual role of natural organic matter. Geochimica et Cosmochimica Acta, 74(16), 4693–4708. https://doi.org/10.1016/j.gca.2010.05.012
- Southworth, G., Mathews, T., Greeley, M., Peterson, M., Brooks, S., & Ketelle, D. (2013). Sources of mercury in a contaminated stream-implications for the timescale of recovery. Environmental Toxicology and Chemistry, 32(4), 764–772. https://doi.org/10.1002/etc.2115
- Tsui, M. T. K., Finlay, J. C., Balogh, S. J., & Nollet, Y. H. (2010). In situ production of methylmercury within a stream channel in northern California. Environmental Science & Technology, 44(18), 6998–7004. https://doi.org/10.1021/es101374y
- US EPA (2001). Method 1630: Methyl mercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS. Retrieved from https://www.epa.gov/sites/production/files/2015-08/documents/method_1630_1998.pdf
- US EPA. (2002). Method 1631, revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. Retrieved from https://www.epa.gov/sites/production/files/2015-08/documents/method_1631e_2002.pdf
- United Nations Environment Programme Global Mercury Partnership. (2020). Overarching Framework for the UNEP Global Mercury Partnership. Retrieved from https://web.unep.org/globalmercurypartnership/overarching-framework-unep-global-mercury-partnership-version-june-2020
- Waples, J. S., Nagy, K. L., Aiken, G. R., & Ryan, J. N. (2005). Dissolution of cinnabar (HgS) in the presence of natural organic matter. Geochimica et Cosmochimica Acta, 69(6), 1575–1588.
- Wei, Q. S., Feng, C. H., Wang, D. S., Shi, A. Y., Zhang, L. T., Wei, Q., & Tang, H. X. (2008). Seasonal variations of chemical and physical characteristics of dissolved organic matter and trihalomethane precursors in a reservoir: A case study. Journal of Hazardous Materials, 150(2), 257–264. https://doi.org/10.1016/j.jhazmat.2007.04.096
- Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology, 37(20), 4702–4708.
- Wentz, D. A., Brigham, M. E., Chasar, L. C., Lutz, M. A., & Krabbenhoft, D. P. (2014). Mercury in the Nation's streams – Levels, trends, and implications. US Geological Survey circular 1395. Retrieved from https://doi.org/10.3133/cir1395
10.3133/cir1395 Google Scholar
- Whyte, D. C., & Kirchner, J. W. (2000). Assessing water quality impacts and cleanup effectiveness in streams dominated by episodic mercury discharges. Science of the Total Environment, 260(1), 1–9. https://doi.org/10.1016/S0048-9697(00)00537-4
- Zhang, T., Kim, B., Levard, C., Reinsch, B. C., Lowry, G. V., Deshusses, M. A., & Hsu-Kim, H. (2011). Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environmental Science & Technology, 46(13), 6950–6958. https://doi.org/10.1021/es203181m