Understanding the peak growing season ecosystem water-use efficiency at four boreal fens in the Athabasca oil sands region
Corresponding Author
Olena Volik
Department of Geography and Environmental Management, University of Waterloo, Waterloo, Canada
Correspondence
Olena Volik, Department of Geography and Environmental Management, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
Email: [email protected]
Search for more papers by this authorRichard Petrone
Department of Geography and Environmental Management, University of Waterloo, Waterloo, Canada
Search for more papers by this authorEric Kessel
Department of Geography and Environmental Management, University of Waterloo, Waterloo, Canada
Search for more papers by this authorAdam Green
Department of Geography and Environmental Management, University of Waterloo, Waterloo, Canada
Search for more papers by this authorJonathan Price
Department of Geography and Environmental Management, University of Waterloo, Waterloo, Canada
Search for more papers by this authorCorresponding Author
Olena Volik
Department of Geography and Environmental Management, University of Waterloo, Waterloo, Canada
Correspondence
Olena Volik, Department of Geography and Environmental Management, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
Email: [email protected]
Search for more papers by this authorRichard Petrone
Department of Geography and Environmental Management, University of Waterloo, Waterloo, Canada
Search for more papers by this authorEric Kessel
Department of Geography and Environmental Management, University of Waterloo, Waterloo, Canada
Search for more papers by this authorAdam Green
Department of Geography and Environmental Management, University of Waterloo, Waterloo, Canada
Search for more papers by this authorJonathan Price
Department of Geography and Environmental Management, University of Waterloo, Waterloo, Canada
Search for more papers by this authorAbstract
Ecosystem water-use efficiency (WUE), a ratio between gross ecosystem production (GEP) and water loss through evapotranspiration (ET) can be helpful for the assessment of coupled peatland carbon and water cycles under anthropogenic changes in the Athabasca oil sands region (AOSR) where extensive oil sands development has been occurring since the 1960's. As such, this study assessed multiyear peak growing season variability of WUE at four fens (poor treed, poor open, treed moderate-rich, open saline) near Fort McMurray using the eddy covariance technique combined with a set of environmental variables. Freshwater fens were characterized by WUE values within the range reported from other boreal wetlands while a saline fen had significantly lower values of WUE. Negative correlation (Rs < −0.55, p < 0.05) between WUE and net radiation was observed. Moisture conditions were responsible for interannual differences in WUE, whereby increasing WUE under wetter conditions was observed. However, such a pattern was offset by decreased air temperature (Tair) resulting in moisture oversupply. This study also revealed a negative effect of wildfire on WUE due to a prominent decline in GEP and a moderate decrease in ET. WUE can be useful for monitoring the functioning of natural and constructed fens, but a better understanding of WUE variability under a wide range of climatic conditions with respect to differences in vegetation is required.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
hyp14323-sup-0001-SupInfo.docxWord 2007 document , 22.2 KB |
TABLE S1 List of variables measured at each site in 2011–2018 TABLE S2 List of equipment installed at each site |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Alberta Environment and Parks (AEP), Environment and Climate Change Canada (ECCC). (2018). Oil Sands Monitoring Program. Annual Report for 2017–2018 Retrieved from https://open.alberta.ca/dataset/dbe8811a-962e-4ce1-b2c2-ff40b8daad7a/resource/35be7d6d-083e-4d28-bf89-b92a7f3ab759/download/osm-annual-report-2017-2018-signed-by-aep-eccc.pdf. Accessed 07 October 2019
- Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
- Aluwihare, S., & Watanabe, K. (2003). Measurement of evaporation on bare soil and estimating surface resistance. Journal of Environmental Engineering, 129, 1157–1168.
- Amiro, B. D. (2001). Paired-tower measurements of carbon and energy fluxes following disturbance in the boreal forest. Global Change Biology, 7, 253–268.
- Amiro, B. D., Cantin, A., Flannigan, M. D., & de Groot, W. J. (2009). Future emissions from Canadian boreal forest fires. Canadian Journal of Forest Research, 39, 383–395.
- Aubinet, M., Vesala, T., & Papale, D. (2012). Eddy covariance: A practical guide to measurement and data analysis. Springer & Business Media.
10.1007/978-94-007-2351-1 Google Scholar
- Belmecheri, S., Maxwell, R. S., Taylor, A. H., Davis, K. J., Guerrieri, R., Moore, D. J. P., & Rayback, S. A. (2021). Precipitation alters the CO2 effect on water-use efficiency of temperate forests. Global Change Biology, 27(8), 1560–1571. https://doi.org/10.1111/gcb.15491
- Blodau, C. (2002). Carbon cycling in peatlands: A review of processes and controls. Environmental Reviews, 10, 111–134. https://doi.org/10.1139/a02-004
- Bocking, E., Cooper, D. J., & Price, J. (2017). Using tree ring analysis to determine impacts of a road on a boreal peatland. Forest Ecology and Management, 404, 24–30. https://doi.org/10.1016/j.foreco.2017.08.007
- Bond-Lamberty, B., Peckham, S. D., Gower, S. T., & Ewers, B. E. (2009). Effects of fire on regional evapotranspiration in the Central Canadian boreal forest. Global Change Biology, 15, 1242–1254.
- Bothe, R.A., & Abraham, C. (1993). Evaporation and evapotranspiration in Alberta 1986 to 1992 addendum. Surface Water Assessment Branch, Technical Services & Monitoring Division, Water Resources Services, Alberta Environmental Protection.
- British Petroleum. (2018). BP Statistical Review of World Energy. 67th addition. Retrieved from https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf
- Brown, S. M., Petrone, R. M., Chasmer, L., Mendoza, C., Lazerjan, M. S., Landhäusser, S. M., Silins, U., Leach, J., & Devito, K. J. (2014). Atmospheric and soil moisture controls on evapotranspiration from above and within a Western boreal plain aspen forest. Hydrological Processes, 28(15), 4449–4462. https://doi.org/10.1002/hyp.9879
- Brown, S. M., Petrone, R. M., Mendoza, C., & Devito, K. J. (2010). Surface vegetation controls on evapotranspiration from a sub-humid Western boreal plain wetland. Hydrological Processes, 24(8), 1072–1085. https://doi.org/10.1002/hyp.7569
- Brümmer, C., Black, T. A., Jassal, R. S., Grant, N. J., Spittlehouse, D. L., Chen, B., Nesic, Z., Amiro, B. D., Arain, M. A., Barr, A. G., Bourque, C. P., Coursolle, C., Dunn, A. L., Flanagan, L. B., Humphreys, E. R., Lafleur, P. M., Margolis, H. A., Mccaughey, J. H., & Wofsy, S. C. (2012). How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agricultural and Forest Meteorology, 153, 14–30. https://doi.org/10.1016/j.agrformet.2011.04.008
- Bubier, J. L., Bhatia, G., Moore, T. R., Roulet, N. T., & Lafleur, P. M. (2003). Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada. Ecosystems, 6, 353–367.
- Burba, G., Schmidt, A., Scott, R. L., Nakai, T., Kathilankal, J., Fratini, G., Hanson, C., Law, B., McDermitt, D. K., Eckles, R., Furtaw, M., & Velgersdyk, M. (2012). Calculating CO2 and H2O eddy covariance fluxes from an enclosed gas analyzer using an instantaneous mixing ratio. Global Change Biology, 18, 385–399.
- Chasmer, L. E., Devito, K. J., Hopkinson, C. D., & Petrone, R. M. (2018). Remote sensing of ecosystem trajectories as a proxy indicator for watershed water balance. Ecohydrology, 11(7), 1–16. https://doi.org/10.1002/eco.1987
- Ciborowski, J.J.H., A. Grgicak-Mannion, M. Kang, H. Zeng, K. Kovalenko, S.E. Bayley, & A.L. Foote. (2012). Development of a regional monitoring program to assess the effects of oil sands development on wetland communities. Final Report for the Cumulative Environmental Management Association (CEMA). Retrieved from http://library.cemaonline.ca/ckan/dataset/32d09ea2-d585-4729-bc29-586469b3075d/resource/b0df027c-55a5-4780-b6b7-5a229c99639e/download/rwgdevelopmentofaregionalmonitoringprogram.pdf
- Cowan, I. R., & Farquhar, G. D. (1977). Stomatal function in relation to leaf metabolism and environment. In D. H. Jennings (Ed.), Integration of activity in the higher plant (pp. 471–505). Cambridge Univ. Press.
- Devito, K., Creed, I., Gan, T., Mendoza, C., Petrone, R., Silins, U., & Smerdon, B. (2005). A framework for broad-scale classification of hydrologic response units on the boreal plain: Is topography the last thing to consider? Hydrological Processes, 19(8), 1705–1714. https://doi.org/10.1002/hyp.5881
- Devito, K., Mendoza, C., & Qualizza, C. (2012). Conceptualizing water movement in the Boreal Plains. Implications for watershed reconstruction. Environmental and Reclamation Research Group for the Canadian Oil Sands Network for Research and Development. Retrieved from https://era.library.ualberta.ca/items/d934019b-141c-4da4-8495-cb634e6f75cf
- Devito, K. J., Anderson, A. E., Kettridge, N., Hokanson, K. J., Adrian, P., Chasmer, L., … Waddington, J. M. (2017). Landscape controls on long - term runoff in subhumid heterogeneous Boreal Plains catchments. Hydrological Processes, 31, 2737–2751. https://doi.org/10.1002/hyp.11213
- Dieleman, C. M., Rogers, B. M., Potter, S., Veraverbeke, S., Johnstone, J. F., Laflamme, J., Solvik, K., Walker, X. J., Mack, M. C., & Turetsky, M. R. (2020). Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Global Change Biology., 26, 6062–6079. https://doi.org/10.1111/gcb.15158
- Dinno, A. (2015). Nonparametric pairwise multiple comparisons in independent groups using Dunn's test. Strata., 15(1), 292–300.
- Dunn, O. J. (1961). Multiple comparisons among means. Journal of the American Statistical Association, 56, 52–64.
- Eaton, B., & Charette, T. (2016). Drivers, stressors and indicators of wetland change in Alberta's Oil Sands Region – potential for use in wetland monitoring. Retrieved from https://www.abmi.ca/home/publications/451-500/455.html%3Bjsessionid=A4840F6A2E8CF67A556E191CD56ADE79?mode=detail&andsubject=aquatic
- Elmes, M. C., Thompson, D. K., & Price, J. S. (2019). Changes to the hydrophysical properties of upland and riparian soils in a burned fen watershed in the Athabasca oil sands region, northern Alberta, Canada. Catena, 181, 104077.
- Evans, I. S., Robinson, D. T., & Rooney, R. C. (2017). A methodology for relating wetland configuration to human disturbance in Alberta. Landscape Ecology, 32, 2059–2076. https://doi.org/10.1007/s10980-017-0566-z
- Ficken, C. D., Cobbaert, D., & Rooney, R. C. (2019). Science of the Total environment low extent but high impact of human land use on wetland fl ora across the boreal oil sands region. Science of the Total Environment, 693, 133647. https://doi.org/10.1016/j.scitotenv.2019.133647
- Flanagan, L. B., & Syed, K. H. (2011). Stimulation of both photosynthesis and respiration in response to warmer and drier conditions in a boreal peatland ecosystem. Global Change Biology, 17, 2271–2287.
- Foken, T., & Leclerc, M. (2004). Methods and limitations in validation of footprint models. Agricultural and Forest Meteorology, 127(3), 223–234. https://doi.org/10.1016/j.agrformet.2004.07.015.
- Goetz, J. D., & Price, J. S. (2015). Role of morphological structure and layering of sphagnum and Tomenthypnum mosses on moss productivity and evaporation rates. Canadian Journal of Soil Science, 95(2), 109–124. https://doi.org/10.4141/cjss-2014-092
- Government of Alberta. (2013). Evaporation and Evapotranspiration in Alberta. Retrieved from https://agriculture.alberta.ca/acis/docs/mortons/mortons-evaporation-estimates.pdf
- Government of Canada. (2017). Temperature and Precipitation Graph for 1981 to 2010 Canadian Climate Normals. Fort McMurray. Retrieved from https://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?stnID=2519&autofwd=1
- Griffis, T. J., Rouse, W. R., & Waddington, J. M. (2000). Interannual variability of net ecosystem CO2 exchange at a subarctic fen. Global Biogeochemical Cycles, 14, 1109–1121.
- Gunderson, C. A., Norby, R. J., & Wullschleger, S. D. (2000). Acclimation of photosynthesis and respiration to simulated climatic warming in northern and southern populations of Acer saccharum: Laboratory and field evidence. Tree Physiology, 20, 87–96.
- Gyimah, A. (2018). Agricultural drainage impacts on the photosynthetic capacity and water use efficiency of boreal peatlands [MSc thesis. Memorial University of Newfoundland].
- Huang, M., Piao, S., Sun, Y. A. N., Ciais, P., Cheng, L. E. I., & Wang, Y. (2015). Change in terrestrial ecosystem water-use efficiency over the last three decades. Global Change Biology, 21, 2366–2378. https://doi.org/10.1111/gcb.12873
- Huang, M., Piao, S., Zeng, Z., Peng, S., Ciais, P., Cheng, L., Mao, J., Poulter, B., Shi, X., & Yao, Y. (2016). Seasonal responses of terrestrial ecosystem water-use efficiency to climate change. Global Change Biology, 22, 2165–2177.
- Johnston, C. A., Ghioca, D. M., Tulbure, M., Bedford, B. L., Bourdaghs, M., Frieswyk, C. B., Vaccaro, L., Zedler, J. B., Johnston, C. A., Ghioca, D. M., Tulbure, M., Barbara, L., Michael, B., Frieswyk, C. B., Vaccaro, L., & Zedler, J. B. (2008). Partitioning vegetation response to anthropogenic stress to develop multi-taxa wetland indicators. Ecological Applications, 18, 983–1001.
- Kaimal, J., & Finnigan, J. (1994). Atmospheric boundary layer flows: Their structure and measurement. Oxford University Press.
10.1093/oso/9780195062397.001.0001 Google Scholar
- Kang, W., & Kang, S. (2019). On the use of alternative water use efficiency parameters in dryland ecosystems: A review. Journal of Ecology and Environment, 7, 1–8.
- Kayranli, B., Scholz, M., Mustafa, A., & Hedmark, Å. (2010). Carbon storage and fluxes within freshwater wetlands: A critical review. Wetlands, 30, 111–124. https://doi.org/10.1007/s13157-009-0003-4
- Kettridge, N., Humphrey, R. E., Smith, J. E., Lukenbach, M. C., Devito, K. J., Petrone, R. M., & Waddington, J. M. (2014). Burned and unburned peat water repellency: Implications for peatland evaporation following wildfire. Journal of Hydrology, 513, 335–341.
- Kettridge, N., Lukenbach, M. C., Hokanson, K. J., Devito, K. J., Petrone, R. M., Mendoza, C. A., & Waddington, J. M. (2019). Severe wildfire exposes remnant peat carbon stocks to increased post-fire drying. Nature Scientific Reports, 9(1), 3727.
- Kettridge, N., Lukenbach, M. C., Hokanson, K. J., Hopkinson, C., Devito, K. J., Petrone, R. M., Mendoza, C. A., & Waddington, J. M. (2017). Low evapotranspiration enhances the resilience of peatland carbon stocks to fire. Geophysical Research Letters, 44(18), 9341–9349.
- Kettridge, N., Thompson, D. K., & Waddington, J. M. (2012). Impact of wildfire on the thermal behavior of northern peatlands: Observations and model simulations. Journal of Geophysical Research – Biogeosciences, 117(G2). https://doi.org/10.1029/2011JG001910.
10.1029/2011JG001910 Google Scholar
- Kljun, N., Calanca, P., Rotach, M. W., & Schmid, H. P. (2004). A simple parameterisation for flux footprint predictions. Boundary-Layer Meteorology, 112, 503–523.
- Kuglitsch, F. G., Reichstein, M., Beer, C., et al. (2008). Characterisation of ecosystem water-use efficiency of european forests from eddy covariance measurements. Biogeosciences Discussions, 5, 4481–4519. https://doi.org/10.5194/bgd-5-4481-2008
10.5194/bgd-5-4481-2008 Google Scholar
- Lavergne, A., Graven, H., De Kauwe, M. G., Keenan, T. F., Medlyn, B. E., & Prentice, I. C. (2019). Observed and modelled historical trends in the water-use efficiency of plants and ecosystems. Global Change Biology, 25(7), 2242–2257. https://doi.org/10.1111/gcb.14634
- Law, B., Falge, E., Gu, L., Baldocchi, D., Bakwin, P., Berbigier, P., Davis, K., Dolman, A., Falk, M., Fuentes, J., et al. (2002). Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113, 97–120.
- Leuning, R., & Judd, M. J. (1996). The relative merits of open and closed path analysers for measurement of eddy fluxes. Global Change Biology, 2, 241–253.
- Li, J., Erickson, J., Peresta, G., & Drake, B. (2010). Evapotranspiration and water use efficiency in a Chesapeake Bay wetland under carbon dioxide enrichment. Global Change Biology, 16(1), 234–245. https://doi.org/10.1111/j.1365-2486.2009.01941.x
- Lieffers, V. J., Caners, R. T., & Ge, H. (2017). Re-establishment of hummock topography promotes tree regeneration on highly disturbed moderate-rich fens. Journal of Environmental Management, 197, 258–264. https://doi.org/10.1016/j.jenvman.2017.04.002
- Lima, A. C., & Wrona, F. J. (2019). Multiple threats and stressors to the Athabasca River basin: What do we know so far? Science of Total Environment, 649, 640–651.
- Lukenbach, M. C., Devito, K. J., Kettridge, N., Petrone, R. M., & Waddington, J. M. (2016). Burn severity alters peatland moss water availability: Implications for post-fire recovery. Ecohydrology, 9(2), 341–353.
- McCarter, C., & Price, J. (2014). Ecohydrology of Sphagnum moss hummocks: mechanisms of capitula water supply and simulated effects of evaporation. Ecohydrology, 7, 33–44. https://doi.org/10.1002/eco.1313.
- Medrano, H., Tomas, M., Martorell, S., Flexas, J., Hernandez, E., Rossello, A. P., … Bota, J. (2015). From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. The Crop Journal, 3(3), 220–228.
10.1016/j.cj.2015.04.002 Google Scholar
- Mezbahuddin, M., Grant, R. F., & Flanagan, L. B. (2016). Modeling hydrological controls on variations in peat water content, water table depth and surface energy exchange of a boreal western Canadian fen peatland. Journal of Geophysical Research: Biogeosciences, 121, 2216–2242. https://doi.org/10.1002/2016JG003501
- MNP. (2017). A Review of the 2016 Horse River Wildfire, Prepared for Forestry Division, 11 Alberta Agriculture and Forestry. Retrieved from https://www.alberta.ca/assets/documents/Wildfire-MNP-Report.pdf
- Monteith, J. L. (1965). Evaporation and environment. In G. E. Fogg (Ed.), Symposium of the Society for Experimental Biology, the state and movement of water in living organisms (Vol. 19, pp. 205–234). Academic Press, Inc..
- Morison, M. Q., Petrone, R. M., Wilkinson, S. L., Green, A., & Waddington, J. M. (2020). Ecosystem scale evapotranspiration and CO2 exchange in burned and unburned peatlands: Implications for the ecohydrological resilience of carbon stocks to wildfire. Ecohydrology, 13. https://doi.org/10.1002/eco.2189
- Munns, R. (2005). Genes and salt tolerance: Bringing them together. The New Phytologist, 167(3), 645–663. https://doi.org/10.1111/j.1469-8137.2005.01487.x
- Natural Regions Committee. (2006). Natural Regions and Subregions of Alberta. Compiled by D.J. Downing and W.W. Pettapiece. Government of Alberta. Pub. No. T/852. Retrieved from https://www.albertaparks.ca/media/2942026/nrsrcomplete_may_06.pdf
- Nicholls, E. M., Carey, S. K., Humphreys, E. R., Clark, M. G., & Drewitt, G. B. (2016). Multi-year water balance assessment of a newly constructed wetland, Fort McMurray, Alberta. Hydrological Processes, 30(16), 2739–2753. https://doi.org/10.1002/hyp.10881
- Niu, S., Zhang, Z., Xia, J., Zhou, X., Song, B., Li, L., & Wan, S. (2011). Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe. Global Change Biology, 17, 1073–1082. https://doi.org/10.1111/j.1365-2486.2010.02280.x
- Olsen, E. R., & Doherty, J. M. (2012). The legacy of pipeline installation on the soil and vegetation of Southeast Wisconsin wetlands. Ecological Engineering, 39, 53–62. https://doi.org/10.1016/j.ecoleng.2011.11.005
- Otte, M. L. (2001). What is stress to a wetland plant? Environmental and Experimental Botany, 46, 195–202.
- Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60, 324–349.
- Pelster, D., Burke, J. M., Couling, K., Luke, S. H., Smith, D. W., & Prepas, E. E. (2009). Water and nutrient inputs, outputs and storage in Canadian boreal forest wetlands: A review. Journal of Environmental Engineering and Science, 7(Supplement 1), 35–50. https://doi.org/10.1139/s08-024
- Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A, 194, 120–145.
- Peterson, B., & Carl, P. (2020). Performance Analytics: Econometric Tools for Performance and Risk Analysis. R package version 2.0.4. https://CRAN.R-project.org/package=PerformanceAnalytics
- Petrone, R., Silins, U., & Devito, K. (2007). Dynamics of evapotranspiration from a riparian pond complex in the Western boreal Forest, Alberta, Canada. Hydrological Processes, 21(11), 1391–1401. https://doi.org/10.1002/hyp.6298
- Phillips, T., Petrone, R. M., Wells, C. M., & Price, J. S. (2016). Characterizing dominant controls governing evapotranspiration within a natural saline fen in the Athabasca Oil Sands of Alberta, Canada. Ecohydrology, 9(5), 817–829. https://doi.org/10.1002/eco.1685
- Ponton, S., Flanagan, L. B., Alstad, K. P., Johnson, B. G., Morgenstern, L., Kljun, N., Black, T. A., & Barr, A. G. (2006). Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Global Change Biology, 12, 294–310.
- Price, J. S. (2003). Role and character of seasonal peat soil deformation on the hydrology of undisturbed and cutover peatlands. Water Resources Research, 39(9), 1–10. https://doi.org/10.1029/2002WR001302
- R Core Team. (2017) R: A Language and Environment for Statistical Computing. https://www.R-project.org/
- Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., … Valentini, R. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11(9), 1424–1439.
- Reichstein, M., Tenhunen, J. D., Roupsard, O., Rambal, S., Miglietta, F., Peressotti, A., et al. (2002). Severe drought effects on ecosystem CO 2 and H 2 O fluxes at three Mediterranean evergreen sites: Revision of current hypotheses ? Global Change Biology, 8, 999–1017.
- Rooney, R. C., Bayley, S. E., & Schindler, D. W. (2012). Oil sands mining and reclamation cause massive loss of peatland and stored carbon. Proceedings of the National Academy of Sciences of the United States of America, 109(13), 4933–4937. https://doi.org/10.1073/pnas.1117693108
- Roy, M., & Weston, J. (2016). Identifying the Scope and Objectives of the Wetland Monitoring Program. Retrieved from https://ftp-public.abmi.ca/home/publications/documents/450_Roy_etal_2017_ScopeandObjectiveofWetlandMonitoringProgram_ABMI.pdf
- RStudio Team. (2015). RStudio: Integrated development for R. RStudio, Inc. Retrieved from http://www.rstudio.com/
- Sanders, D., & Robinson, M. F. (1997). How can stomata contribute to salt tolerance? Annals of Botany, 80, 387–393.
- Scarlett, S. J., Petrone, R. M., & Price, J. S. (2017). Controls on plot-scale evapotranspiration from a constructed fen in the Athabasca oil sands region, Alberta. Ecological Engineering, 100, 199–210. https://doi.org/10.1016/j.ecoleng.2016.12.020
- Semeraro, V., Vacchiano, G., Aretano, R., & Ascoli, D. (2019). Application of vegetation index time series to value fire effect on primary production in a southern European rare wetland. Ecological Engineering, 134, 9–17. https://doi.org/10.1016/j.ecoleng.2019.04.004
- Sonnentag, O., van der Kamp, G., Barr, A. G., & Chen, J. M. (2010). On the relationship between water table depth and water vapor and carbon dioxide fluxes in a minerotrophic fen. Global Change Biology, 16(6), 1762–1776. https://doi.org/10.1111/j.1365-2486.2009.02032.x
- Sperling, O., Lazarovitch, N., Schwartz, A., & Shapira, O. (2014). Effects of high salinity irrigation on growth, gas exchange and photoprotection in date palms (Phoenix dactylifera L., cv Medjool). Environmental and Experimental Botany, 99, 100–109.
- Strack, M., Softa, D., Bird, M., & Xu, B. (2017). Impact of winter roads on boreal peatland carbon exchange. Global Change Biology, 24, 1–12. https://doi.org/10.1111/gcb.13844
- Sulman, B. N., Desai, A. R., Cook, B. D., Saliendra, N., & Mackay, D. S. (2009). Contrasting carbon dioxide fluxes between a drying shrub wetland in northern Wisconsin, USA and nearby forests. Biogeosciences, 6, 1115–1126.
- Sulman, B. N., Desai, A. R., Saliendra, N., et al. (2010). CO2 fluxes at northern fens and bogs have opposite responses to interannual fluctuations in water table. Geophysical Research Letters, 37, L19702. https://doi.org/10.1029/2010GL044018
- Sutter, L. A., Perry, J. E., & Chambers, R. M. (2014). Tidal freshwater marsh plant response to low level salinity increases. Wetlands, 34, 167–175.
- Thompson, D. K., Baisley, A. S., & Waddington, J. M. (2015). Seasonal variation in albedo and radiation exchange between a burned and unburned forested peatland: Implications for peatland evaporation. Hydrological Processes, 29, 3227–3235.
- Thompson, D. K., Benscoter, B. W., & Waddington, J. M. (2014). Water balance of a burned and unburned forested boreal peatland. Hydrological Processes, 28, 5954–5964.
- Turetsky, M. R., Benscoter, B., Page, S., Rein, G., van der Werf, G. R., & Watts, A. (2015). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8, 11–14.
- van Beest, C. (2019). Deeper burning increases available phosphorus, promotes moss growth and carbon dioxide uptake in a fen peatland one-year post-wildfire in Fort McMurray, AB. [MSc Thesis, University of Waterloo]
- van Beest, C., Petrone, R., Nwaishi, F., & Waddington, J. M. (2019). Increased peatland nutrient availability following the Fort McMurray Horse River wildfire. Diversity, 11, 124. https://doi.org/10.3390/d11090142
- van Rensen, C. K., Nielsen, S. E., White, B., Vinge, T., & Lieffers, V. J. (2015). Natural regeneration of forest vegetation on legacy seismic lines in boreal habitats in Alberta's oil sands region. Biological Conservation, 184, 127–135. https://doi.org/10.1016/j.biocon.2015.01.020
- Villa, J. A., & Bernal, B. (2018). Carbon sequestration in wetlands, from science to practice: An overview of the biogeochemical process, measurement methods and policy framework. Ecological Engineering, 114, 115–128. https://doi.org/10.1016/j.ecoleng.2017.06.037
- Vitt, D. H., Halsey, L. A., Bauer, I. E., & Campbell, C. (2000). Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene. Canadian Journal of Earth Sciences, 37(5), 683–693. https://doi.org/10.1139/e99-097
- Volik, O., Elmes, M., Petrone, R., Kessel, E., Green, A., Cobbaert, D., & Price, J. (2020). Wetlands in the Athabasca oil sands region: The nexus between wetland hydrological function and resource extraction. Environmental Reviews, 28, 246–261. https://doi.org/10.1139/er-2019-0040
- Volik, O., Kessel, E., Green, A., Petrone, R., & Price, J. (2020). Growing season evapotranspiration in boreal fens in the Athabasca oil sands region: Variability and environmental controls. Hydrological Processes, 35. https://doi.org/10.1002/hyp.14020
- Volik, O., Petrone, R., & Price, J. (2021). Soil respiration and litter decomposition along a salinity gradient in a saline boreal fen in the Athabasca oil sands region. Geoderma, 395(3), 115070. https://doi.org/10.1016/j.geoderma.2021.115070
- Volik, O., Petrone, R. M., Quanz, M., Macrae, M. L., Rooney, R., & Price, J. S. (2019). Environmental controls on CO2 exchange along a salinity gradient in a saline boreal fen in the Athabasca oil sands region. Wetlands, 40, 1–14. https://doi.org/10.1007/s13157-019-01257-5
- Volik, O., Petrone, R. M., Wells, C. M., & Price, J. S. (2018). Impact of salinity, hydrology and vegetation on long-term carbon accumulation in a saline boreal peatland and its implication for peatland reclamation in the Athabasca oil sands region. Wetlands, 38, 373–382. https://doi.org/10.1007/s13157-017-0974-5
- Waddington, J. M., Morris, P. J., Kettridge, N., Granath, G., Thompson, D. K., & Moore, P. A. (2015). Hydrological feedbacks in northern peatlands. Ecohydrology, 8(1), 113–127. https://doi.org/10.1002/eco.1493
- Webb, E. K., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. The Quarterly Journal of the Royal Meteorological Society, 106, 85–100.
- Webster, K. L., Beall, F. D., Creed, I. F., & Kreutzweiser, D. P. (2015). Impacts and prognosis of natural resource development on water and wetlands in Canada's boreal zone. Environmental Reviews, 23(1), 78–131. https://doi.org/10.1139/er-2014-0063
- Wells, C., Ketcheson, S., & Price, J. (2017). Hydrology of a wetland-dominated headwater basin in the boreal plain, Alberta, Canada. Journal of Hydrology, 547, 168–183. https://doi.org/10.1016/j.jhydrol.2017.01.052
- Willier, C. (2017). Changes in peatland plant community composition and stand structure due to road induced flooding and desiccation [M.Sc. thesis, University of Alberta].
- Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., … Verma, S. (2002). Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113, 223–243.
- Wood, M. E., Macrae, M. L., Strack, M., Price, J. S., Osko, T. J., & Petrone, R. M. (2016). Spatial variation in nutrient dynamics among five different peatland types in the Alberta oil sands region. Ecohydrology, 9(4), 688–699. https://doi.org/10.1002/eco.1667
- Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L., Menzer, O., & Reichstein, M. (2018). Basic and extensible post-processing of eddy covariance flux data with R EddyProc. Biogeosciences, 15(16), 5015–5030. https://doi.org/10.5194/bg-15-5015-2018
- Yang, H., Rood, S., & Flanagan, L. (2019). Controls on ecosystem water-use and water-use efficiency: Insights from a comparison between grassland and riparian forest in the northern Great Plains. Agricultural and Forest Meteorology, 271, 22–32. https://doi.org/10.1016/j.agrformet.2019.02.034