An integrated approach of flash flood analysis in ungauged Mediterranean watersheds using post-flood surveys and unmanned aerial vehicles
Corresponding Author
Aristeidis Kastridis
Faculty of Forestry and Natural Environment, Laboratory of Mountainous Water Management and Control, Aristotle University of Thessaloniki, Thessaloniki, Greece
Correspondence
Aristeidis Kastridis, Faculty of Forestry and Natural Environment, Laboratory of Mountainous Water Management and Control, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Email: [email protected]
Search for more papers by this authorChristos Kirkenidis
Faculty of Forestry and Natural Environment, Laboratory of Mountainous Water Management and Control, Aristotle University of Thessaloniki, Thessaloniki, Greece
Search for more papers by this authorMarios Sapountzis
Faculty of Forestry and Natural Environment, Laboratory of Mountainous Water Management and Control, Aristotle University of Thessaloniki, Thessaloniki, Greece
Search for more papers by this authorCorresponding Author
Aristeidis Kastridis
Faculty of Forestry and Natural Environment, Laboratory of Mountainous Water Management and Control, Aristotle University of Thessaloniki, Thessaloniki, Greece
Correspondence
Aristeidis Kastridis, Faculty of Forestry and Natural Environment, Laboratory of Mountainous Water Management and Control, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Email: [email protected]
Search for more papers by this authorChristos Kirkenidis
Faculty of Forestry and Natural Environment, Laboratory of Mountainous Water Management and Control, Aristotle University of Thessaloniki, Thessaloniki, Greece
Search for more papers by this authorMarios Sapountzis
Faculty of Forestry and Natural Environment, Laboratory of Mountainous Water Management and Control, Aristotle University of Thessaloniki, Thessaloniki, Greece
Search for more papers by this authorAbstract
This study analyzes the flash flood event of two ungauged ephemeral streams in Olympiada region (Chalkidiki, North Greece), which occurred at the 21–22 of November 2019. Aim of the study is to reconstruct the specific flash flood event, investigate the causes of flood generation mechanisms, evaluate the performance of SCS-CN hydrological and HEC-RAS hydraulic models, investigate the relation between extreme flash floods and human intervention, using the combination of ground and aerial observations obtained from the field survey and unmanned aerial vehicles (UAVs), respectively. The results of the specific discharge ranged between 9 and 11 m3 s−1 km2, values that are typical for flash flood events in Mediterranean region. The comparison between the observed and simulated values of flood extent showed sufficiently good performance of the hydraulic model (CSI = 82%). However, the statistical analysis of the observed and simulated flood depths displayed a flood depth overestimation by the applied model, despite that the values of the used statistic indexes are acceptable (RMSE = 0.35 m, SD = 0.53, NSE = 0.56, PBIAS = 11.26%). The model overestimation of flood depth was attributed to the DEM low resolution and quality. Ground and aerial observations depicted the alluvial fan activation, the alternation of flow paths and the huge sediment transport. Human intervention in main streams, urban sprawl, wet AMC and sediment transport were among the main factors that contributed to the flash flood generation. This integrated approach revealed the necessity of the constant evaluation and validation of hydrological and hydraulic models in small ungauged Mediterranean watersheds and ephemeral streams. The use of UAVs in combination with ground observations and hydraulic simulation could significantly contribute to the enhanced understanding of flash flood mechanisms, in the direction of flood risk mitigation, improvement of the planning efficiency of flood prevent measures, flood hazard estimation, evolution of flood warning systems and floodplain geomorphology analysis.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Angelakis, A. N., Antoniou, G., Voudouris, K., Kazakis, N., Dalezios, N., & Dercas, N. (2020). History of floods in Greece: Causes and measures for protection. Natural Hazards, 101(3), 833–852.
- Anselmo, V., Galeati, G., Palmieri, S., Rossi, U., & Todini, E. (1996). Flood risk assessment using an integrated hydrological and hydraulic modeling approach: A case study. Journal of Hydrology, 175, 533–554. https://doi.org/10.1016/S0022-1694(96)80023-0
- Altenau, E. H., Pavelsky, T. M., Bates, P. D., & Neal, J. C. (2017). The effects of spatial resolution and dimensionality on modeling regional scale hydraulics in a multichannel river. Water Resources Research, 53, 1683–1701. https://doi.org/10.1002/2016WR019396
- Barredo, J. I. (2007). Major flood disasters in Europe: 1950–2005. Natural Hazards, 42, 125–148. https://doi.org/10.1007/s11069-006-9065-2
- Barredo, J. I. (2009). Normalised flood losses in Europe: 1970–2006. Natural Hazards Earth System Science, 9, 97–104. https://doi.org/10.5194/nhess-9-97-2009
- Barrera, A., Llasat, M. C., & Barriendos, M. (2006). Estimation of extreme flash flood evolution in Barcelona County from 1351 to 2005. Natural Hazards Earth System Science, 6, 505–518. https://doi.org/10.5194/nhess-6-505-2006
- Bates, P. D., & De Roo, A. (2000). A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236, 54–77. https://doi.org/10.1016/S0022-1694(00)00278-X
- Belmonte, M. C., & Segura Beltrán, F. (2001). Flood events in Mediterranean ephemeral streams (ramblas) in Valencia region, Spain. Catena, 45, 229–249.
- Blade, E., Cea, L., & Corestein, G. (2014). Numerical modelling of river inundations. Ingeniería del Agua, 18(1), 71–82. https://doi.org/10.4995/ia.2014.3144
- Boithias, L., Sauvage, S., Lenica, A., Roux, H., Abbaspour, K. C., Larnier, K., … Sánchez-Pérez, J. M. (2017). Simulating flash floods at hourly time-step using the SWAT model. Water, 9, 1–25. https://doi.org/10.3390/w9120929
- Booij, M. J. (2005). Impact of climate change on river flooding assessed with different spatial model resolutions. Journal of Hydrology, 303, 176–198. https://doi.org/10.1016/j.jhydrol.2004.07.013
- Borga, M., Gaume, E., Creutin, J. D., & Marchi, L. (2008). Surveying flash floods: Gauging the ungauged extremes. Hydrological Processes, 22, 3883–3885. https://doi.org/10.1002/hyp.7111
- Borga, M., Anagnostou, E. N., Blöschl, G., & Creutin, J. D. (2010). Flash floods: Observations and analysis of hydro-meteorological controls. Journal of Hydrology, 394(1-2), 1–284.
- Borga, M., Anagnostou, E. N., Blöschl, G., & Creutin, J. D. (2011). Flash flood forecasting, warning and risk management: The HYDRATE project. Environmental Science & Policy, 14(7), 834–844. https://doi.org/10.1016/j.envsci.2011.05.017
- Braud, I., Roux, H., Anquetin, S., Maubourguet, M. M., Manus, C., Viallet, P., & Dartus, D. (2010). The use of distributed hydrological models for the Gard 2002 flash flood event: Analysis of associated hydrological processes. Journal of Hydrology, 394, 162–181. https://doi.org/10.1016/j.jhydrol.2010.03.033
- Bull, L. J., Kirkby, M. J., Shannon, J., & Hooke, J. M. (1999). The impact of rainstorms on floods in ephemeral channels in Southeast Spain. Catena, 38, 191–209. https://doi.org/10.1016/S0341-8162(99)00071-5
- Calder, I., Hofer, T., Vermont, S., & Warren, P. (2007). Towards a new understanding of forests and water. Unasylva, 58(229), 3–10.
- Canuti, P., Casagli, N., Pellegrini, M., & Tosatti, G. (2001). Geo-hydrological hazard. In G. B. Vai & I. P. Martini (Eds.), Anatomy of an orogen. The Apennines and adjacent Mediterranean basins (pp. 513–532). Dordrecht: Kluwer Academic Publisher. https://doi.org/10.1007/978-94-015-9829-3_28
10.1007/978-94-015-9829-3_28 Google Scholar
- Carlyle-Moses, D. E., & Gash, J. H. C. (2011). Rainfall interception loss by Forest canopies. In D. Levia, D. Carlyle-Moses, & T. Tanaka (Eds.), Forest hydrology and biogeochemistry. Ecological studies (analysis and synthesis), 216. Dordrecht: Springer.
10.1007/978-94-007-1363-5_20 Google Scholar
- Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied Hydrology (p. 572). New York, NY: McGraw-Hill.
- CORINE Land Cover. European Environment Agency (EEA) (2012). Retrieved on October 22, 2019 from https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012.
- Cook, A., & Merwade, V. (2009). Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping. Journal of Hydrology, 377, 131–142. https://doi.org/10.1016/j.jhydrol.2009.08.015
- De Jong, C. (2016, 2016). European perspectives on forest hydrology. In D. Amatya, T. Williams, L. Bren, & C. Jong (Eds.), Forest hydrology: Processes, management and assessment (pp. 69–87). Wallingford, England: CABI.
10.1079/9781780646602.0069 Google Scholar
- De Lima, J. L. M. P., & Singh, V. P. (2003). Laboratory experiments on the influence of storm movement on overland flow. Physics and Chemistry of the Earth, Parts A/B/C, 28(6), 277–282.
- Datry, T., Larned, S. T., & Tockner, K. (2014). Intermittent rivers: A challenge for freshwater ecology. Bioscience, 64(3), 229–235. https://doi.org/10.1093/biosci/bit027
- Diakakis, M., Mavroulis, S., & Deligiannakis, G. (2012). Floods in Greece, a statistical and spatial approach. Natural Hazards, 62, 485–500. https://doi.org/10.1007/s11069-012-0090-z
- Diakakis, M., Deligiannakis, G., Katsetsiadou, K., Antoniadis, Z., & Melaki, M. (2017). Mapping and classification of direct flood impacts in the complex conditions of an urban environment. The case study of the 2014 flood in Athens, Greece. Urban Water Journal, 14(10), 1065–1074. https://doi.org/10.1080/1573062X.2017.1363247
- Diakakis, M., Andreadakis, E., Nikolopoulos, E. I., Spyrou, N. I., Gogou, M. E., Deligiannakis, G., … Lekkas, E. (2019). An integrated approach of ground and aerial observations in flash flood disaster investigations. The case of the 2017 Mandra flash flood in Greece. International Journal of Disaster Risk Reduction, 33, 290–309. https://doi.org/10.1016/j.ijdrr.2018.10.015
- Efstratiadis, A., Koutsoyiannis, D., Mamassis, N., Dimitriadis, P., & Maheras, A. (2014a). Literature Review of Flood Hydrology and Related Tools, DEUCALION—Assessment of Flood Flows in Greece under Conditions of Hydroclimatic Variability: Development of Physically-Established Conceptual-Probabilistic Framework and Computational Tools. Retrieved from http://www.itia.ntua.gr/en/getfile/1495/1/documents/Report_3_3.pdf
- Efstratiadis, A., Koussis, A. D., Koutsoyiannis, D., & Mamassis, N. (2014b). Flood design recipes vs. reality: Can predictions for ungauged basins be trusted? Natural Hazards and Earth System Sciences, 14, 1417–1428.
- Faccini, F., Luino, F., Paliaga, G., Sacchini, A., & Turconi, L. (2015). Yet another disaster flood of the Bisagno stream in Genoa (Liguria, Italy): October the 9th-10th 2014 event. Rendiconti Online Societa Geologica Italiana, 35, 128–131. https://doi.org/10.3301/ROL.2015.81
- Faccini, F., Luino, F., Paliaga, G., Sacchini, A., Turconi, L., & de Jong, C. (2018). Role of rainfall intensity and urban sprawl in the 2014 flash flood in Genoa City, Bisagno catchment (Liguria, Italy). Applied Geography, 98, 224–241. https://doi.org/10.1016/j.apgeog.2018.07.022
- Gaume, E., & Borga, M. (2008). Post-flood field investigations in upland catchments after major flash floods: Proposal of a methodology and illustrations. Journal of Flood Risk Management, 1(4), 175–189.
- Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., … Viglione, A. (2009). A compilation of data on European flash floods. Journal of Hydrology, 367(1), 70–78. https://doi.org/10.1016/j.jhydrol.2008.12.028
- Gaume, E., Borga, M., Llasat, M. C., Maouche, S., Lang, M., & Diakakis, M. (2016). Mediterranean extreme floods and flash floods. Into Hydro-meteorological extremes, The Mediterranean Region under Climate Change. A scientific update, 2016IRD Éditions Institut de Recherche pour le Développement. Marseille, 2016, 133–144.
- Giandotti, M. (1934). Previsione delle piene e delle magre dei corsi d'acqua. Ministero LL.PP. In Memorie e Studi Idrografici; Servizio Idrografico Italiano: Rome, Italy; p. 13 (In Italian).
- Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1999). Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of Hydrological Engineering, 4(2), 135–143.
- Guzzetti, F., Stark, C. P., & Salvati, P. (2005). Evaluation of flood and landslide risk to the population of Italy. Environmental Management, 36, 15–36. https://doi.org/10.1007/s00267-003-0257-1
- Hall, J., Arheimer, B., Borga, M., Brázdil, R., Claps, P., Kiss, A., … Blöschl, G. (2014). Understanding flood regime changes in Europe: A state-of-the-art assessment. Hydrology and Earth System Science, 18, 2735–2772. https://doi.org/10.5194/hess-18-2735-2014
- Hegg, C. (2006). Waldwirkung auf Hochwasser (Forest impacts on floods). LWF Wissen, 55, 29–33.
- Hooke, J. M. (2016). Geomorphological impacts of an extreme flood in SE Spain. Geomorphology, 263, 19–38. https://doi.org/10.1016/j.geomorph.2016.03.021
- Hydrologic Engineering Center—GeoRAS. GIS tools for support of HEC—RAS using ArcGIS; User's manual, version 4.2; US Army Corps of Engineers. Hydrologic engineering center: Davis, CA, 2009.
- Hydrologic Engineering Center—River Analysis System. River analysis System; User's manual, version 4.1; US Army Corps of Engineers, Hydrologic engineering center: Davis, CA, 2010.
- Hjulstrom, F. (1935). Studies of the morphological activity of rivers as illustrated by the river Fyris, bulletin. Geological Institute Upsalsa, 25, 221–527.
- Hydrologic Modeling System HEC—HMS; User's manual, version 4.2; US Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA, 2016.
- Institute of Geology and Mineral Exploitation (IGME) ( 1993). Engineering geological map of Greece, scale 1:500000. Athens 1993.
- Ji-Sung, K., Chan-Joo, L., Won, K., & Yong-Jeon, K. (2010). Roughness coefficient and its uncertainty in gravel-bed river. Water Science and Engineering, 3(2), 217–232. https://doi.org/10.3882/j.issn.1674-2370.2010.02.010
- Jodar-Abellan, A., Valdes-Abellan, J., Pla, C., & Gomariz-Castillo, F. (2019). Impact of land use changes on flash flood prediction using a sub-daily SWAT model in five Mediterranean ungauged watersheds (SE Spain). Science of the Total Environment, 657, 1578–1591. https://doi.org/10.1016/j.scitotenv.2018.12.034
- Jonkman, S. N., & Kelman, I. (2005). An analysis of the causes and circumstances of flood disaster deaths. Disasters, 29, 75–97. https://doi.org/10.1111/j.0361-3666.2005.00275.x
- Kaffas, K., & Hrissanthou, V. (2014). Application of a continuous rainfall-runoff model to the basin of Kosynthos river using the hydrologic software HEC-HMS. Global NEST Journal, 16, 188–203.
- Kastridis, A., & Stathis, D. (2020). Evaluation of hydrological and hydraulic models applied in typical Mediterranean Ungauged watersheds using post-flash-flood measurements. Hydrology, 7(1), 12. https://doi.org/10.3390/hydrology7010012
- Kastridis, A., & Stathis, D. (2017). The effect of rainfall intensity on the flood generation of mountainous watersheds (Chalkidiki prefecture, North Greece). In T. Karacostas, A. Bais, & P. Nastos (Eds.), Perspectives on atmospheric sciences (Vol. 2017, pp. 341–347). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-35095-0_48.
10.1007/978-3-319-35095-0_48 Google Scholar
- Kastridis, A., & Kamperidou, V. (2015). Evaluation of the post-fire erosion and flood control works in the area of Cassandra (Chalkidiki, North Greece). Journal of Forestry Research, 26, 209–217.
- Kastridis, A., & Stathis, D. (2012). Natural and anthropogenic flash flood generation in mountainous watersheds—The case of Apollonia torrent. In Proceedings of the protection and restoration of the environment XI (Vol. 2012, pp. 126–135). Thessaloniki, Greece: Water Resources Management.
- Koenig, T. A., Bruce, J. L., O'Connor, J. E., McGee, B. D., Holmes, R. R., Jr., Hollins, R., et al. (2016). Identifying and preserving high-water mark data. U.S. Geological Survey Techniques and Methods, Book 3, Chap., A24, 47. https://doi.org/10.3133/tm3A24
- Lacasta, A., Morales-Hernández, M., Murillo, J., & García-Navarro, P. (2014). An optimized GPU implementation of a 2D free surface simulation model on unstructured meshes. Advances in Engineering Software, 78, 1–15. https://doi.org/10.1016/j.advengsoft.2014.08.007
- Lagouvardos, K., Kotroni, V., Bezes, A., Koletsis, I., Kopania, T., Lykoudis, S., … Vougioukas, S. (2017). The automatic weather stations NOANN network of the National Observatory of Athens: Operation and database. Geoscience Data Journal, 4(1), 4–16. https://doi.org/10.1002/gdj3.44
- Langhammer, J., Bernsteinová, J., & Miřijovský, J. (2017). Building a high-precision 2D hydrodynamic flood model using UAV photogrammetry and sensor network monitoring. Water, 9(11), 861.
- Langhammer, J., & Vacková, T. (2018). Detection and mapping of the geomorphic effects of flooding using UAV photogrammetry. Pure and Applied Geophysics, 175(9), 3223–3245.
- Lara, A., Saurí, D., Ribas, A., & Pavón, D. (2010). Social perceptions of floods and flood management in a Mediterranean area (Costa Brava, Spain). Natural Hazards Earth Systems Science, 10(10), 2081–2091. https://doi.org/10.5194/nhess-10-2081-2010
- Llasat, M. C., Llasat-Botija, M., Prat, M. A., Porcu, F., Price, C., Mugnai, A., & Yair, Y. (2010). High-impact floods and flash floods in Mediterranean countries: The FLASH preliminary database. Advances in Geosciences, 23, 47–55.
10.5194/adgeo-23-47-2010 Google Scholar
- Marafuz, I., Rodrigues, C., & Gomes, A. (2015). Analysis and assessment of urban flash floods on areas with limited available altimetry data (Arouca, NW Portugal): A methodological approach. Environmental Earth Sciences, 73, 2937–2949. https://doi.org/10.1007/s12665-014-3943-9
- Marchi, L., Borga, M., Preciso, E., Sangati, M., Gaume, E., Bain, V., & Pogačnik, N. (2009). Comprehensive post-event survey of a flash flood in Western Slovenia: Observation strategy and lessons learned. Hydrological Processes, 23(26), 3761–3770.
- Marchi, L., Borga, M., Preciso, E., & Gaume, E. (2010). Characterization of selected extreme flash floods in Europe and implications for flood risk management. Journal of Hydrology, 394(1-2), 118–133. https://doi.org/10.1016/j.jhydrol.2010.07.017
- Michailidi, E. A., Antoniadi, S., Koukouvinos, A., Bacchi, B., & Efstratiadis, A. (2018). Timing the time of concentration: Shedding light on a paradox. Hydrological Sciences Journal, 63(5), 721–740. https://doi.org/10.1080/02626667.2018.1450985
- Ministry of Environment (2002). Planning and public works of Greece. Drainage of hydraulic road works. In Guidelines for the study of road works; general secretariat for public works. Athens, Greece: Directorate of Road Constructions.
- Mitra, S. S., Wright, J., Abhisek, S., & Ghosh, A. R. (2015). An integrated water balance model for assessing water scarcity in a data-sparse interfluve in eastern India. Hydrological Sciences Journal, 60, 1813–1827. https://doi.org/10.1080/02626667.2014.934248
- Moriasi, D., Arnold, J., Van Liew, M., Bingner, R., Harmel, R., & Veith, T. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153
- Myronidis, D., Emmanouloudis, D., Stathis, D., & Stefanidis, P. (2009). Integrated flood hazard mapping in the framework of the E.U. directive on the assessment and management of flood risks. Fresenius Environmental Bulletin, 18(1), 102–111.
- Myronidis, D., Stathis, D., & Sapountzis, M. (2016). Post-evaluation of flood hazards induced by former artificial interventions along a coastal Mediterranean settlement. Journal of Hydrologic Engineering, 21(10), 05016022. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001413
- Myronidis, D., & Ioannou, K. (2019). Forecasting the urban expansion effects on the design storm hydrograph and sediment yield using artificial neural networks. Water, 11, 31. https://doi.org/10.3390/w11010031
- Nalbantis, Ι., & Lymperopoulos, S. (2012). Assessment of flood frequency after forest fires in small ungauged basins based on uncertain measurements. Hydrological Sciences Journal, 57, 52–72. https://doi.org/10.1080/02626667.2011.637041
- Nash, J., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
10.1016/0022-1694(70)90255-6 Google Scholar
- Niemczynowicz, J. (1984). Investigation of the influence of rainfall movement on runoff hydrograph: Part I – Simulation on conceptual catchment. Hydrology Research, 15(2), 57–70. https://doi.org/10.2166/nh.1984.0005
- Norén, V., Hedelin, B., Nyberg, L., & Bishop, K. (2016). Flood risk assessment – Practices in flood prone Swedish municipalities. International Journal of Disaster Risk Reduction, 18, 206–217. https://doi.org/10.1016/j.ijdrr.2016.07.003
- Papaioannou, G., Loukas, A., & Georgiadis, C. H. (2013). The effect of riverine terrain spatial resolution on flood modeling and mapping. Paper presented at: Proc. SPIE 8795, first international conference on remote sensing and geoinformation of the environment (RSCy2013), 87951H. Retrieved from https://doi.org/10.1117/12.2028218
- Papaioannou, G., Loukas, A., Vasiliades, L., & Aronica, G. T. (2016). Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach. Natural Hazards, 83(1), 117–132. https://doi.org/10.1007/s11069-016-2382-1
- Papaioannou, G., Efstratiadis, A., Vasiliades, L., Loukas, A., Papalexiou, S. M., Koukouvinos, A., … Kossieris, P. (2018). An operational method for flood directive implementation in Ungauged urban areas. Hydrology, 5, 1–23. https://doi.org/10.3390/hydrology5020024
- Papaioannou, G., Varlas, G., Terti, G., Papadopoulos, A., Loukas, A., Panagopoulos, Y., & Dimitriou, E. (2019). Flood inundation mapping at Ungauged basins using coupled Hydrometeorological–hydraulic Modelling: The catastrophic case of the 2006 flash flood in Volos City, Greece. Water, 11(11), 1–28. https://doi.org/10.3390/w11112328
- Papamichail, D., Georgiou, P., & Karamouzis, D. (2001). Estimation of flood hydrographs for the 7-8 October high rainfall in Megali Panagia Chalkidikis area. Hydrotechnika, 11, 47–60.
- Pappenberger, F., Beven, K., Horritt, M., & Blazkova, S. (2005). Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. Journal of Hydrology, 302, 46–69. https://doi.org/10.1016/j.jhydrol.2004.06.036
- Pazzi, V., Morelli, S., Pratesi, F., Sodi, T., Valori, L., Gambacciani, L., & Casagli, N. (2016a). Assessing the safety of schools affected by geo-hydrologic hazards: The geohazard safety classification (GSC). International Journal of Disaster Risk Reduction, 15, 80–93. https://doi.org/10.1016/j.ijdrr.2015.11.006
- Pazzi, V., Morelli, S., Fidolini, F., Krymi, E., Casagli, N., & Fanti, R. (2016b). Testing cost effective methodologies for flood and seismic vulnerability assessment in communities of developing countries (Dajç, northern Albania). Geomatics, Natural Hazards and Risk, 7(3), 971–999. https://doi.org/10.1080/19475705.2015.1004374
- Perks, M. T., Russell, A. J., & Large, A. R. (2016). Advances in flash flood monitoring using unmanned aerial vehicles (UAVs). Hydrology & Earth System Sciences, 20(10), 4005–4015.
- Pilgrim, D. H., Chapman, T. G., & Doran, D. G. (1988). Problems of rainfall-runoffmodeling in arid and semiarid regions. Hydrological Sciences Journal, 33, 379–400. https://doi.org/10.1080/02626668809491261
- Quesada-Román, A., Ballesteros-Cánovas, J. A., Granados-Bolaños, S., Birkel, C., & Stoffel, M. (2020). Dendrogeomorphic reconstruction of floods in a dynamic tropical river. Geomorphology, 359, 107133.
- Rezaei-Sadr, H. (2017). Influence of coarse soils with high hydraulic conductivity on the applicability of the SCSCN method. Hydrological Sciences Journal, 62, 843–848. https://doi.org/10.1080/02626667.2016.1262037
- Sapountzis, M., & Stathis, D. (2014). Relationship between rainfall and run-off in the Stratoni region (N. Greece) after the storm of 10th February 2010. Global NEST Journal, 16, 420–431. https://doi.org/10.30955/gnj.001234
- Schleppi, P. (2011, 2011). Forested water catchments in a changing environment. In M. Bredemeier, S. Cohen, D. L. Godbold, E. Lode, V. Pichler, & P. Schleppi (Eds.), Forest management and the water cycle: An ecosystem-based approach (Vol. 212, pp. 89–110). New York, NY: Ecological Studies; Springer.
- Schumann, G., Bates, P. D., Horritt, M. S., Matgen, P., & Pappenberger, F. (2009). Progress, in integration of remote sensing–derived flood extent and stage data and hydraulic models. Reviews Geophysics, 47(4), 1–20. https://doi.org/10.1029/2008RG000274
- Segura-Beltrán, F., Sanchis-Ibor, C., Morales-Hernández, M., González-Sanchis, M., Bussi, G., & Ortiz, E. (2016). Using post-flood surveys and geomorphologic mapping to evaluate hydrological and hydraulic models: The flash flood of the Girona River (Spain) in 2007. Journal of Hydrology, 541, 310–329. https://doi.org/10.1016/j.jhydrol.2016.04.039
- Shen, D., Wang, J., Cheng, X., Rui, Y., & Ye, S. (2015). Integration of 2-D hydraulic model and high-resolution lidar derived DEM for floodplain flow modeling. Hydrology and Earth Systems Science, 19(8), 3605–3616. https://doi.org/10.5194/hess-19-3605-2015
- Singh, V. P. (1998). Extreme value type 1 distribution. Entropy-based parameter estimation in hydrology (pp. 108–136). The Netherlands: Springer. https://doi.org/10.1007/978-94-017-1431-0_8
- Singh, J., Knapp, H. V., Arnold, J., & Demissie, M. (2005). Hydrological modeling of the iroquois river watershed using hspf and swat1. Journal of the American Water Resources Association, 41, 343–360. https://doi.org/10.1111/j.1752-1688.2005.tb03740.x.
- Smith, D. I. (1994). Flood damage estimation-a review of urban stage-damage curves and loss functions. Water ScieLO SA, 20, 231–238.
- Soulis, K. X., Valiantzas, J. D., Dercas, N., & Londra, P. A. (2009). Analysis of the runoff generation mechanism for the investigation of the SCS-CN method applicability to a partial area experimental watershed. Hydrology and Earth Systems Science, 13, 605–615. https://doi.org/10.5194/hess-13-605-2009
- Soulis, K. X., Ntoulas, N., Nektarios, P., & Kargas, G. (2017). Runoff reduction from extensive green roofs having different substrate depth and plant cover. Ecological Engineering, 102, 80–89. https://doi.org/10.1016/j.ecoleng.2017.01.031
- Soulis, K. (2018). Estimation of SCS curve number variation following forest fires. Hydrological Sciences Journal, 63, 1332–1346. https://doi.org/10.1080/02626667.2018.1501482
- Stathis, D., & Stefanidis, P. (2001). Analysis of the conditions of flood formation in torrents in area of north Chalkidiki (Greece) in October 2000. Paper presented at: Proceedings of the conference: Third Balkan Scientific Conference, Study, Conservation and Utilization of Forest Resources, Sofia, Bulgaria, 2–6 October, vol. 3, pp. 213–222.
- Stathis, D., & Sapountzis, M. (2003). Investigation of the relation between rainfall and runoff in the watershed of torrent Petrenia (Gomati region, Chalkidiki, northern Greece) after the storm of 7-9th October 2000. Geotechnical Scientific Issues, 13(1), 69–78.
- Stathis, D., Sapountzis, M., & Myronidis, D. (2010). Assessment of land use change effect on design storm hydrograph using the SCS curve number method. Fresenius Environmental Bulletin, 19, 1928–1934.
- Steenhuis, T., Winchell, M., Rossing, J., Zollweg, J. A., & Walters, M. (1995). SCS runoff equation revisited for variable-source runoff areas. Journal of Irrigation and Drainage Engineering, 121, 234–238. https://doi.org/10.1061/(ASCE)0733-9437(1995)121:3(234)
- Stefanidis, P., Kalinderis, I., & Tziaftani, F. (2007). The cause and the mechanism of the 7–8 October 2006 flood at Olympiada Chalkidiki (North Greece). International Conference Erosion and Torrent Control as a Factor in Sustainable River Basin Management, Belgrade, Serbia, pp. 1–8.
- Tamminga, A. D., Eaton, B. C., & Hugenholtz, C. H. (2015). UAS-based remote sensing of fluvial change following an extreme flood event. Earth Surface Processes and Landforms, 40(11), 1464–1476. https://doi.org/10.1002/esp.3728
- Tsakiris, G., & Bellos, V. (2014). A numerical model for two-dimensional flood routing in complex terrains. Water Resources Management, 28(5), 1277–1291. https://doi.org/10.1007/s11269-014-0540-3
- Tsubaki, R., & Ichiro, F. (2010). Unstructured grid generation using LiDAR data for urban flood inundation modelling. Hydrological Processes, 24, 1404–1420. https://doi.org/10.1002/hyp.7608
- United States Department of Agriculture (USDA). (2010). Time of Concentration. In L. Owens (Ed.), Part 630 Hydrology, National Engineering Handbook (Ch. 15). Washington, DC: Natural Resources, Conservation Service, Conservation Engineering Division
- Van Dijk, A. I. J. M. (2010). Selection of an appropriately simple storm runoff model. Hydrology and Earth Systems Science, 14, 447–458. https://doi.org/10.5194/hess-14-447-2010
- Van Liew, M. W., Arnold, J. G., & Garbrecht, J. D. (2003). Hydrologic simulation on agricultural watersheds: Choosing between two models. Transactions of the American Society of Agricultural Engineers, 46(6), 1539–1551.
- Vélez, J. J., Puricelli, M., López Unzu, F., & Francés, F. (2009). Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrology and Earth Systems Science, 13, 229–246. https://doi.org/10.5194/hess-13-229-2009
- Verma, S., Verma, R. K., Mishra, S. K., Singh, A., & Jayaraj, G. K. (2017). A revisit of NRCS-CN inspired models coupled with RS and GIS for runoff estimation. Hydrological Sciences Journal, 62, 1891–1930. https://doi.org/10.1080/02626667.2017.1334166
- Vinet, F., Lumbroso, D., Defossez, S., & Boissier, L. (2012). A comparative analysis of the loss of life during two recent floods in France: The sea surge caused by the storm Xynthia and the flash flood in Var. Natural Hazards, 61, 1179–1201. https://doi.org/10.1007/s11069-011-9975-5
- Von Schiller, D., Datry, T., Corti, R., Foulquier, A., Tockner, K., Marcé, R., … Zoppini, A. (2019). Sediment respiration pulses inIntermittent Rivers and ephemeral streams. Global Biogeochemical Cycles, 33, 1251–1263. https://doi.org/10.1029/2019GB006276
- Yannopoulos, S., Eleftheriadou, E., Mpouri, S., & Giannopoulou, I. (2015). Implementing the requirements of the European flood directive: The case of Ungauged and poorly gauged watersheds. Environmental Processes, 2, 191–207. https://doi.org/10.1007/s40710-015-0094-2
10.1007/s40710-015-0094-2 Google Scholar
- Yu, D., & Lane, S. N. (2006). Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 1: Mesh resolution effects. Hydrological Processes, 20(7), 1541–1565. https://doi.org/10.1002/hyp.5935