CAPN5 genetic inactivation phenotype supports therapeutic inhibition trials
Corresponding Author
Katherine J. Wert
Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California
Correspondence Katherine J. Wert and Vinit B. Mahajan, Department of Ophthalmology, Omics Laboratory, Byers Eye Institute, Stanford University, Palo Alto, CA, 94304.
Email: [email protected] (K. J. W.) and [email protected] (V. B. M.)
Search for more papers by this authorSusanne F. Koch
Department of Physiological Genomics, Biomedical Center, Ludwig Maximillian University, Munich, Germany
Search for more papers by this authorGabriel Velez
Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California
Department of Ophthalmology, Medical Scientist Training Program, University of Iowa, Iowa City, Iowa
Search for more papers by this authorChun-Wei Hsu
Department of Ophthalmology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, New York
Departments of Ophthalmology, Pathology, and Cell Biology, Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia Stem Cell Initiative (CSCI), Columbia University, New York, New York
Search for more papers by this authorMaryAnn Mahajan
Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California
Search for more papers by this authorAlexander G. Bassuk
Department of Pediatrics, University of Iowa, Iowa City, Iowa
Search for more papers by this authorStephen H. Tsang
Department of Ophthalmology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, New York
Departments of Ophthalmology, Pathology, and Cell Biology, Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia Stem Cell Initiative (CSCI), Columbia University, New York, New York
Search for more papers by this authorCorresponding Author
Vinit B. Mahajan
Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California
Department of Ophthalmology, Veterans Affairs, Palo Alto Health Care System, Palo Alto, California
Correspondence Katherine J. Wert and Vinit B. Mahajan, Department of Ophthalmology, Omics Laboratory, Byers Eye Institute, Stanford University, Palo Alto, CA, 94304.
Email: [email protected] (K. J. W.) and [email protected] (V. B. M.)
Search for more papers by this authorCorresponding Author
Katherine J. Wert
Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California
Correspondence Katherine J. Wert and Vinit B. Mahajan, Department of Ophthalmology, Omics Laboratory, Byers Eye Institute, Stanford University, Palo Alto, CA, 94304.
Email: [email protected] (K. J. W.) and [email protected] (V. B. M.)
Search for more papers by this authorSusanne F. Koch
Department of Physiological Genomics, Biomedical Center, Ludwig Maximillian University, Munich, Germany
Search for more papers by this authorGabriel Velez
Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California
Department of Ophthalmology, Medical Scientist Training Program, University of Iowa, Iowa City, Iowa
Search for more papers by this authorChun-Wei Hsu
Department of Ophthalmology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, New York
Departments of Ophthalmology, Pathology, and Cell Biology, Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia Stem Cell Initiative (CSCI), Columbia University, New York, New York
Search for more papers by this authorMaryAnn Mahajan
Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California
Search for more papers by this authorAlexander G. Bassuk
Department of Pediatrics, University of Iowa, Iowa City, Iowa
Search for more papers by this authorStephen H. Tsang
Department of Ophthalmology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, New York
Departments of Ophthalmology, Pathology, and Cell Biology, Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia Stem Cell Initiative (CSCI), Columbia University, New York, New York
Search for more papers by this authorCorresponding Author
Vinit B. Mahajan
Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California
Department of Ophthalmology, Veterans Affairs, Palo Alto Health Care System, Palo Alto, California
Correspondence Katherine J. Wert and Vinit B. Mahajan, Department of Ophthalmology, Omics Laboratory, Byers Eye Institute, Stanford University, Palo Alto, CA, 94304.
Email: [email protected] (K. J. W.) and [email protected] (V. B. M.)
Search for more papers by this authorAbstract
Small molecule pharmacological inhibition of dominant human genetic disease is a feasible treatment that does not rely on the development of individual, patient-specific gene therapy vectors. However, the consequences of protein inhibition as a clinical therapeutic are not well-studied. In advance of human therapeutic trials for CAPN5 vitreoretinopathy, genetic inactivation can be used to infer the effect of protein inhibition in vivo. We created a photoreceptor-specific knockout (KO) mouse for Capn5 and compared the retinal phenotype to both wild-type and an existing Capn5 KO mouse model. In humans, CAPN5 loss-of-function (LOF) gene variants were ascertained in large exome databases from 60,706 unrelated subjects without severe disease phenotypes. Ocular examination of the retina of Capn5 KO mice by histology and electroretinography showed no significant abnormalities. In humans, there were 22 LOF CAPN5 variants located throughout the gene and in all major protein domains. Structural modeling of coding variants showed these LOF variants were nearby known disease-causing variants within the proteolytic core and in regions of high homology between human CAPN5 and 150 homologs, yet the LOF of CAPN5 was tolerated as opposed to gain-of-function disease-causing variants. These results indicate that localized inhibition of CAPN5 is a viable strategy for hyperactivating disease alleles.
CONFLICT OF INTERESTS
The authors declare that there are no conflict of interests.
Supporting Information
Filename | Description |
---|---|
humu23894-sup-0001-Supplemental_Materials.pdf869.9 KB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–W350. https://doi.org/10.1093/nar/gkw408
- Bains, M., Cebak, J. E., Gilmer, L. K., Barnes, C. C., Thompson, S. N., Geddes, J. W., & Hall, E. D. (2013). Pharmacological analysis of the cortical neuronal cytoskeletal protective efficacy of the calpain inhibitor SNJ-1945 in a mouse traumatic brain injury model. Journal of Neurochemistry, 125(1), 125–132. https://doi.org/10.1111/jnc.12118
- Bassuk, A. G., Yeh, S., Wu, S., Martin, D. F., Tsang, S. H., Gakhar, L., & Mahajan, V. B. (2015). Structural modeling of a novel CAPN5 mutation that causes uveitis and neovascular retinal detachment. PLOS One, 10(4), e0122352. https://doi.org/10.1371/journal.pone.0122352
- Blake, J. A., Eppig, J. T., Kadin, J. A., Richardson, J. E., Smith, C. L., & Bult, C. J. (2017). Mouse Genome Database (MGD)-2017: Community knowledge resource for the laboratory mouse. Nucleic Acids Research, 45(D1), D723–D729. https://doi.org/10.1093/nar/gkw1040
- Cadenhead, K. S., Carasso, B. S., Swerdlow, N. R., Geyer, M. A., & Braff, D. L. (1999). Prepulse inhibition and habituation of the startle response are stable neurobiological measures in a normal male population. Biological Psychiatry, 45(3), 360–364.
- Campbell, R. L., & Davies, P. L. (2012). Structure-function relationships in calpains. Biochemical Journal, 447(3), 335–351. https://doi.org/10.1042/bj20120921
- Cham, A., Bansal, M., Banda, H., Kwon, Y., Tlucek, P., Bassuk, A., …Mahajan, A. (2016). Secondary glaucoma in CAPN5-associated neovascular inflammatory vitreoretinopathy. Clinical Ophthalmology, 10, 1187–1197. https://doi.org/10.2147/opth.s103324.
- Cho, G. Y., Schaefer, K. A., Bassuk, A. G., Tsang, S. H., & Mahajan, V. B. (2018). CRISPR genome surgery in the retina in light of off-targeting. Retina, 38(8), 1443–1455. https://doi.org/10.1097/iae.0000000000002197
- Cooper, G. M. (2005). Distribution and intensity of constraint in mammalian genomic sequence. Genome Research, 15(7), 901–913. https://doi.org/10.1101/gr.3577405
- Das, A., Guyton, M. K., Smith, A., Wallace, G., McDowell, M. L., Matzelle, D. D., … Banik, N. L. (2013). Calpain inhibitor attenuated optic nerve damage in acute optic neuritis in rats. Journal of Neurochemistry, 124(1), 133–146. https://doi.org/10.1111/jnc.12064
- Davis, T. L., Walker, J. R., Finerty, P. J., Jr., Mackenzie, F., Newman, E. M., & Dhe-Paganon, S. (2007). The crystal structures of human calpains 1 and 9 imply diverse mechanisms of action and auto-inhibition. Journal of Molecular Biology, 366(1), 216–229. https://doi.org/10.1016/j.jmb.2006.11.037
- Dickinson, M. E., Flenniken, A. M., Ji, X., Teboul, L., Wong, M. D., White, J. K., … Murray, S. A. (2016). High-throughput discovery of novel developmental phenotypes. Nature, 537(7621), 508–514. https://doi.org/10.1038/nature19356
- Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M., … Sali, A. (2006). Comparative protein structure modeling using Modeller. Current Protocols in Bioinformatics, 15, 5.6.1–5.6.30. https://doi.org/10.1002/0471250953.bi0506s15
10.1002/0471250953.bi0506s15 Google Scholar
- Franz, T., Winckler, L., Boehm, T., & Dear, T. N. (2004). Capn5 is expressed in a subset of T cells and is dispensable for development. Molecular and Cellular Biology, 24(4), 1649–1654.
- Gakhar, L., Bassuk, A. G., Velez, G., Khan, S., Yang, J., Tsang, S. H., & Mahajan, V. B. (2016). Small-angle X-ray scattering of calpain-5 reveals a highly open conformation among calpains. Journal of Structural Biology, 196(3), 309–318. https://doi.org/10.1016/j.jsb.2016.07.017
- González, A., Sáez, M. E., Aragón, M. J., Galán, J. J., Vettori, P., Molina, L., … Ramírez-Lorca, R. (2006). Specific haplotypes of the CALPAIN-5 gene are associated with polycystic ovary syndrome. Human Reproduction, 21(4), 943–951. https://doi.org/10.1093/humrep/dei443.
- Hoang, M. V., Smith, L. E. H., & Senger, D. R. (2011). Calpain inhibitors reduce retinal hypoxia in ischemic retinopathy by improving neovascular architecture and functional perfusion. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1812(4), 549–557. https://doi.org/10.1016/j.bbadis.2010.08.008
- Hohl-Abrahao, J. C., & Creutzfeldt, O. D. (1991). Topographical mapping of the thalamocortical projections in rodents and comparison with that in primates. Experimental Brain Research, 87(2), 283–294.
- Imai, S., Shimazawa, M., Nakanishi, T., Tsuruma, K., & Hara, H. (2010). Calpain inhibitor protects cells against light-induced retinal degeneration. Journal of Pharmacology and Experimental Therapeutics, 335(3), 645–652. https://doi.org/10.1124/jpet.110.171298
- Jia, Z., Petrounevitch, V., Wong, A., Moldoveanu, T., Davies, P. L., Elce, J. S., & Beckmann, J. S. (2001). Mutations in calpain 3 associated with limb girdle muscular dystrophy: Analysis by molecular modeling and by mutation in m-calpain. Biophysical Journal, 80(6), 2590–2596. https://doi.org/10.1016/s0006-3495(01)76229-7
- Kanan, Y., Moiseyev, G., Agarwal, N., Ma, J. X., & Al-Ubaidi, M. R. (2007). Light induces programmed cell death by activating multiple independent proteases in a cone photoreceptor cell line. Investigative Ophthalmology and Visual Science, 48(1), 40–51. https://doi.org/10.1167/iovs.06-0592
- Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066.
- Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., & Haussler, D. (2002). The human genome browser at UCSC. Genome Research, 12(6), 996–1006. https://doi.org/10.1101/gr.229102
- Koch, S. F., Duong, J. K., Hsu, C. W., Tsai, Y. T., Lin, C. S., Wahl-Schott, C. A., & Tsang, S. H. (2017). Genetic rescue models refute nonautonomous rod cell death in retinitis pigmentosa. Proceedings of the National Academy of Sciences of the United States of America, 114(20), 5259–5264. https://doi.org/10.1073/pnas.1615394114
- Koch, S. F., Tsai, Y. T., Duong, J. K., Wu, W. H., Hsu, C. W., Wu, W. P., … Tsang, S. H. (2015). Halting progressive neurodegeneration in advanced retinitis pigmentosa. Journal of Clinical Investigation, 125(9), 3704–3713. https://doi.org/10.1172/jci82462
- Kosicki, M., Tomberg, K., & Bradley, A. (2018). Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nature Biotechnology, 36(8), 765–771. https://doi.org/10.1038/nbt.4192
- Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., … MacArthur, D. G. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature, 536(7616), 285–291. https://doi.org/10.1038/nature19057
- Ma, H., Tochigi, A., Shearer, T. R., & Azuma, M. (2009). Calpain inhibitor SNJ-1945 attenuates events prior to angiogenesis in cultured human retinal endothelial cells. Journal of Ocular Pharmacology and Therapeutics, 25(5), 409–414. https://doi.org/10.1089/jop.2009.0030
- Mahajan, V., & Lin, J. (2013). Lymphocyte infiltration in CAPN5 autosomal dominant neovascular inflammatory vitreoretinopathy. Clinical Ophthalmology, 7, 1339–1345. https://doi.org/10.2147/opth.s46450
- Mahajan, V., Rowell, A. G., & Bassuk, V. B. (2012). Monozygotic twins with CAPN5 autosomal dominant neovascular inflammatory vitreoretinopathy. Clinical Ophthalmology, 6, 2037–2044. https://doi.org/10.2147/opth.s40086
- Mahajan, V. B., Skeie, J. M., Bassuk, A. G., Fingert, J. H., Braun, T. A., Daggett, H. T., … Stone, E. M. (2012). Calpain-5 mutations cause autoimmune uveitis, retinal neovascularization, and photoreceptor degeneration. PLOS Genetics, 8(10), https://doi.org/10.1371/journal.pgen.1003001
- Mahajan, V., Tlucek, P. S., Folk, J. C., & Sobol, W. M. (2013). Surgical management of fibrotic encapsulation of the fluocinolone acetonide implant in CAPN5-associated proliferative vitreoretinopathy. Clinical Ophthalmology, 7, 1093–1098. https://doi.org/10.2147/opth.s43939
- Nelson, N. G., Skeie, J. M., Muradov, H., Rowell, H. A., Seo, S., & Mahajan, V. B. (2014). CAPN5 gene silencing by short hairpin RNA interference. BMC Research Notes, 7, 642. https://doi.org/10.1186/1756-0500-7-642
- Ouagazzal, A., Grottick, A. J, Moreau, J., & Higgins, G. A. (2001). Effect of LSD on prepulse inhibition and spontaneous behavior in the rat. A pharmacological analysis and comparison between two rat strains. Neuropsychopharmacology, 25(4), 565–575. https://doi.org/10.1016/s0893-133x(01)00282-2
- Ouagazzal, A. M., Jenck, F., & Moreau, J. L. (2001). Drug-induced potentiation of prepulse inhibition of acoustic startle reflex in mice: A model for detecting antipsychotic activity? Psychopharmacology, 156(2-3), 273–283.
- Ozaki, T., Ishiguro, S., Hirano, S., Baba, A., Yamashita, T., Tomita, H., & Nakazawa, M. (2013). Inhibitory peptide of mitochondrial μ-calpain protects against photoreceptor degeneration in rhodopsin transgenic S334ter and P23H rats. PLOS One, 8(8), e71650. https://doi.org/10.1371/journal.pone.0071650
- Ozaki, T., Nakazawa, M., Yamashita, T., Sorimachi, H., Hata, S., Tomita, H., … Ishiguro, S. (2012). Intravitreal injection or topical eye-drop application of a μ-calpain C2L domain peptide protects against photoreceptor cell death in Royal College of Surgeons’ rats, a model of retinitis pigmentosa. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1822(11), 1783–1795. https://doi.org/10.1016/j.bbadis.2012.07.018
- Pennesi, M. E., Weleber, R. G., Yang, P., Whitebirch, C., Thean, B., Flotte, T. R., … Chulay, J. D. (2018). Results at 5 years after gene therapy for RPE65-deficient retinal dystrophy. Human Gene Therapy, 29, 1428–1437. https://doi.org/10.1089/hum.2018.014
- Randazzo, N. M., Shanks, M. E., Clouston, P., & MacLaren, R. E. (2017). Two novel CAPN5 variants associated with mild and severe autosomal dominant neovascular inflammatory vitreoretinopathy phenotypes. Ocular Immunology and Inflammation, 27, 693–698. https://doi.org/10.1080/09273948.2017.1370651
- Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(Web Server issue), W320–W324. https://doi.org/10.1093/nar/gku316
- Russell, S., Bennett, J., Wellman, J. A., Chung, D. C., Yu, Z. F., Tillman, A., … Maguire, A. M. (2017). Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. The Lancet, 390(10097), 849–860. https://doi.org/10.1016/s0140-6736(17)31868-8
- Saez, M. E., Grilo, A., Moron, F. J., Manzano, L., Martinez-Larrad, M. T., Gonzalez-Perez, A., … Serrano-Rios, M. (2008). Interaction between Calpain 5, Peroxisome proliferator-activated receptor-gamma and Peroxisome proliferator-activated receptor-delta genes: A polygenic approach to obesity. Cardiovascular Diabetology, 7, 23. https://doi.org/10.1186/1475-2840-7-23
- Schaefer, K. A., Toral, M. A., Velez, G., Cox, A. J., Baker, S. A., Borcherding, N. C., … Mahajan, V. B. (2016). Calpain-5 expression in the retina localizes to photoreceptor synapses. Investigative Ophthalmology and Visual Science, 57(6), 2509–2521. https://doi.org/10.1167/iovs.15-18680
- Shanab, A. Y., Nakazawa, T., Ryu, M., Tanaka, Y., Himori, N., Taguchi, K., … Yamamoto, M. (2012). Metabolic stress response implicated in diabetic retinopathy: The role of calpain, and the therapeutic impact of calpain inhibitor. Neurobiology of Disease, 48(3), 556–567. https://doi.org/10.1016/j.nbd.2012.07.025
- Shimazawa, M., Suemori, S., Inokuchi, Y., Matsunaga, N., Nakajima, Y., Oka, T., … Hara, H. (2010). A novel calpain inhibitor, ((1S)-1-((((1S)-1-Benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-me thylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester (SNJ-1945), reduces murine retinal cell death in vitro and in vivo. Journal of Pharmacology and Experimental Therapeutics, 332(2), 380–387. https://doi.org/10.1124/jpet.109.156612
- Smith, A. W., Das, A., Guyton, M. K., Ray, S. K., Rohrer, B., & Banik, N. L. (2011). Calpain inhibition attenuates apoptosis of retinal ganglion cells in acute optic neuritis. Investigative Ophthalmology and Visual Science, 52(7), 4935–4941. https://doi.org/10.1167/iovs.10-7027
- Sorimachi, H., Ishiura, S., & Suzuki, K. (1997). Structure and physiological function of calpains. Biochemical Journal, 328(Pt 3), 721–732.
- Strobl, S., Fernandez-Catalan, C., Braun, M., Huber, R., Masumoto, H., Nakagawa, K., … Bode, W. (2000). The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proceedings of the National Academy of Sciences, 97(2), 588–592.
- Suzuki, K., Hata, S., Kawabata, Y., & Sorimachi, H. (2004). Structure, activation, and biology of calpain. Diabetes, 53(Suppl 1), S12–S18.
- Swerdlow, N. R., Braff, D. L., & Geyer, M. A. (1999). Cross-species studies of sensorimotor gating of the startle reflex. Annals of the New York Academy of Sciences, 877, 202–216.
- Syntichaki, P., Xu, K., Driscoll, M., & Tavernarakis, N. (2002). Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature, 419(6910), 939–944. https://doi.org/10.1038/nature01108
- Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.
- Trager, N., Smith, A., Wallace Iv, G., Azuma, M., Inoue, J., Beeson, C., & Banik, N. L. (2014). Effects of a novel orally administered calpain inhibitor SNJ-1945 on immunomodulation and neurodegeneration in a murine model of multiple sclerosis. Journal of Neurochemistry, 130(2), 268–279. https://doi.org/10.1111/jnc.12659
- Velez, G., Bassuk, A. G., Colgan, D., Tsang, S. H., & Mahajan, V. B. (2017). Therapeutic drug repositioning using personalized proteomics of liquid biopsies. JCI Insight, 2(24), e97818. https://doi.org/10.1172/jci.insight.97818.
- Velez, G., Tsang, S. H., Tsai, Y. T., Hsu, C. W., Gore, A., Abdelhakim, A. H., … Mahajan, V. B. (2017). Gene therapy restores Mfrp and corrects axial eye length. Scientific Reports, 7(1), 16151. https://doi.org/10.1038/s41598-017-16275-8
- Velez, G., Bassuk, A. G., Schaefer, K. A., Brooks, B., Gakhar, L., Mahajan, M., … Mahajan, V. B. (2018). A novel de novo CAPN5 mutation in a patient with inflammatory vitreoretinopathy, hearing loss, and developmental delay. Cold Spring Harbor Molecular Case Studies, 4, a002519. https://doi.org/10.1101/mcs.a002519
- Wang, Y., Zhang, X., Song, Z., & Gu, F. (2017). An anti-CAPN5 intracellular antibody acts as an inhibitor of CAPN5-mediated neuronal degeneration. Oncotarget, 8(59), 100312–100325. https://doi.org/10.18632/oncotarget.22221
- Wert, K. J., Bassuk, A. G., Wu, W. H., Gakhar, L., Coglan, D., Mahajan, M., … Mahajan, V. B. (2015). CAPN5 mutation in hereditary uveitis: The R243L mutation increases calpain catalytic activity and triggers intraocular inflammation in a mouse model. Human Molecular Genetics, 24(16), 4584–4598. https://doi.org/10.1093/hmg/ddv189
- Wert, K. J., Davis, R. J., Sancho-Pelluz, J., Nishina, P. M., & Tsang, S. H. (2013). Gene therapy provides long-term visual function in a pre-clinical model of retinitis pigmentosa. Human Molecular Genetics, 22(3), 558–567. https://doi.org/10.1093/hmg/dds466
- Wert, K. J., Mahajan, V. B., Zhang, L., Yan, Y., Li, Y., Tosi, J., … Tsang, S. H. (2016). Neuroretinal hypoxic signaling in a new preclinical murine model for proliferative diabetic retinopathy. Signal Transduction and Targeted Therapy, 1, 1. https://doi.org/10.1038/sigtrans.2016.5
- Wert, K. J., Sancho-Pelluz, J., & Tsang, S. H. (2014). Mid-stage intervention achieves similar efficacy as conventional early-stage treatment using gene therapy in a pre-clinical model of retinitis pigmentosa. Human Molecular Genetics, 23(2), 514–523. https://doi.org/10.1093/hmg/ddt452
- Wert, K. J., Skeie, J. M., Bassuk, A. G., Olivier, A. K., Tsang, S. H., & Mahajan, V. B. (2014). Functional validation of a human CAPN5 exome variant by lentiviral transduction into mouse retina. Human Molecular Genetics, 23(10), 2665–2677. https://doi.org/10.1093/hmg/ddt661