Flours from Swedish pulses: Effects of treatment on functional properties and nutrient content
Corresponding Author
Ferawati Ferawati
Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
Correspondence
Ferawati Ferawati, Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden.
Email: [email protected]
Search for more papers by this authorMohammed Hefni
Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
Food Industries Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
Search for more papers by this authorCornelia Witthöft
Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
Search for more papers by this authorCorresponding Author
Ferawati Ferawati
Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
Correspondence
Ferawati Ferawati, Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden.
Email: [email protected]
Search for more papers by this authorMohammed Hefni
Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
Food Industries Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
Search for more papers by this authorCornelia Witthöft
Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
Search for more papers by this authorAbstract
Despite the high nutritional profile in pulses, pulse consumption in Sweden is still low. However, the recent increase in consumption of sustainable and locally produced food in Sweden is driving demand for a versatile, functional pulse-based ingredient that can be incorporated into different food products. This study assessed different treatments (boiling, roasting, and germination) when preparing flour from domestically grown pulses (yellow pea, gray pea, faba bean, and white bean). Functional properties (water and oil absorption capacity, emulsion and foaming properties, and gelation concentration) of the flours produced following different treatments and their nutrient content (total dietary fiber, total choline, and folate content) were determined. Depending on pulse type, all treatments increased (p < .001) water absorption capacity up to threefold and gelation concentration up to twofold, whereas emulsion activity and foaming capacity decreased by 3%–33% and 5%–19%, respectively, compared with flour made from raw pulses. All treatments also had a significant effect (p < .001) on nutrient content. Total dietary fiber increased (p < .02) by 11%–33%, depending on treatment and pulse type. Boiling decreased (p < .001) total choline and folate content in all pulse flours, by 17%–27% and 15%–32%, respectively. Germination doubled folate content (p < .001) in flour from both pea types compared with flour from the raw peas. In conclusion, treated pulse flours could be useful in food applications such as coating batter, dressings, beverages, or bakery goods, to improve the content of fiber, total choline, and folate.
CONFLICT OF INTEREST
The authors have no conflict of interest to declare.
REFERENCES
- Acevedo, B. A., Thompson, C. M. B., González Foutel, N. S., Chaves, M. G., & Avanza, M. V. (2017). Effect of different treatments on the microstructure and functional and pasting properties of pigeon pea (Cajanus cajan L.), dolichos bean (Dolichos lablab L.) and jack bean (Canavalia ensiformis) flours from the north-east Argentina. International Journal of Food Science and Technology, 52(1), 222–230. https://doi.org/10.1111/ijfs.13271
- Adebowale, K. O., & Lawal, O. S. (2004). Comparative study of the functional properties of bambarra groundnut (Voandzeia subterranean), jack bean (Canavalia ensiformis) and mucuna bean (Mucuna pruriens) flours. Food Research International, 37(4), 355–365. https://doi.org/10.1016/j.foodres.2004.01.009
- Aguilera, Y., Esteban, R. M., Benítez, V., Mollá, E., & Martín-Cabrejas, M. A. (2009). Starch, functional properties, and microstructural characteristics in chickpea and lentil as affected by thermal processing. Journal of Agricultural and Food Chemistry, 57(22), 10682–10688. https://doi.org/10.1021/jf902042r
- Aguilera, Y., Estrella, I., Benitez, V., Esteban, R. M., & Martín-Cabrejas, M. A. (2011). Bioactive phenolic compounds and functional properties of dehydrated bean flours. Food Research International, 44(3), 774–780. https://doi.org/10.1016/j.foodres.2011.01.004
- Aguilera, Y., Martín-Cabrejas, M. A., Benítez, V., Mollá, E., López-Andréu, F. J., & Esteban, R. M. (2009). Changes in carbohydrate fraction during dehydration process of common legumes. Journal of Food Composition and Analysis, 22(7–8), 678–683. https://doi.org/10.1016/j.jfca.2009.02.012
- AOAC (1995). AOAC official method 991.43 total, soluble and insoluble dietary fiber in foods. In Official methods of analysis of the association of official analytical chemists ( 16th ed.). Virginia: AOAC.
- AOAC (2000a). AOAC official method 2002.02 resistant starch in starch and plant materials. In Official methods of analysis of the association of official analytical chemists ( 17th ed.). Gaithersburg: AOAC.
- AOAC (2000b). AOAC official method 934.01 proximate analysis and calculations moisture. In Official methods of analysis of the association of official analytical chemists ( 17th ed.). Gaithersburg: AOAC.
- Benítez, V., Cantera, S., Aguilera, Y., Mollá, E., Esteban, R. M., Díaz, M. F., & Martín-Cabrejas, M. A. (2013). Impact of germination on starch, dietary fiber and physicochemical properties in non-conventional legumes. Food Research International, 50(1), 64–69. https://doi.org/10.1016/j.foodres.2012.09.044
- Chitra, U., Singh, U., & Venkateswara Rao, P. (1996). Phytic acid, in vitro protein digestibility, dietary fiber, and minerals of pulses as influenced by processing methods. Plant Foods for Human Nutrition, 49(4), 307–316. https://doi.org/10.1007/BF01091980
- Delchier, N., Ringling, C., Le Grandois, J., Aoudé-Werner, D., Galland, R., Georgé, S., … Renard, C. M. G. C. (2013). Effects of industrial processing on folate content in green vegetables. Food Chemistry, 139(1–4), 815–824. https://doi.org/10.1016/j.foodchem.2013.01.067
- Dhital, S., Katawal, S. B., & Shrestha, A. K. (2010). Formation of resistant starch during processing and storage of instant noodles. International Journal of Food Properties, 13(3), 454–463. https://doi.org/10.1080/10942910802627091
- Dostálová, R., Horáček, J., Hasalová, I., & Trojan, R. (2009). Study of resistant starch (RS) content in peas during maturation. Czech Journal of Food Sciences, 27(Special Issue 1), S120–S124. https://doi.org/10.17221/935-CJFS
- Du, S.-K., Jiang, H., Yu, X., & Jane, J.-L. (2014). Physicochemical and functional properties of whole legume flour. LWT - Food Science and Technology, 55(1), 308–313. https://doi.org/10.1016/j.lwt.2013.06.001
- Ensminger, A., Ensminger, M., Konlande, J., & Robson, J. (1994). Foods and nutrition encyclopedia ( 2nd ed., Vol. 1A-H, pp. 413–416). London, UK: CRC Press.
- Fabbri, A. D. T., Schacht, R. W., & Crosby, G. A. (2016). Evaluation of resistant starch content of cooked black beans, pinto beans, and chickpeas. NFS Journal, 3, 8–12. https://doi.org/10.1016/j.nfs.2016.02.002
10.1016/j.nfs.2016.02.002 Google Scholar
- FAO (2016). Pulses nutritious seeds for a sustainable future. Rome, Italy: FAO.
- FAO (2017). FAO/INFOODS Databases FAO/INFOODS global food composition database for pulses Version 1.0-uPulses1.0 user guide. Rome, Italy: FAO. Retrieved from http://www.fao.org/3/a-i6832e.pdf
- Farooq, Z., & Boye, J. I. (2011). Novel food and industrial applications of pulse flours and fractions. In B. K. Tiwari, A. Gowen, & B. McKenna (Eds.), Pulse foods processing, quality and nutraceutical applications (pp. 283–323). New York, NY: Academic Press. https://doi.org/10.1016/B978-0-12-382018-1.00011-3
10.1016/B978-0-12-382018-1.00011-3 Google Scholar
- Giami, S. Y. (1993). Effect of processing on the proximate composition and functional properties of cowpea (Vigna unguiculata) flour. Food Chemistry, 47(2), 153–158. https://doi.org/10.1016/0308-8146(93)90237-A
- Hefni, M., Öhrvik, V., Tabekha, M., & Witthöft, C. M. (2010). Folate content in foods commonly consumed in Egypt. LWT - Food Science and Technology, 57(1), 337–343. https://doi.org/10.1016/j.lwt.2013.12.026
- Hefni, M. E., Schaller, F., & Witthöft, C. M. (2018). Betaine, choline and folate content in different cereal genotypes. Journal of Cereal Science, 80, 72–79. https://doi.org/10.1016/j.jcs.2018.01.013
- Hefni, M., & Witthöft, C. M. (2014). Folate content in processed legume foods commonly consumed in Egypt. LWT - Food Science and Technology, 57(1), 337–343. https://doi.org/10.1016/j.lwt.2013.12.026
- Jabrin, S., Ravanel, S., Gambonnet, B., Douce, R., & Rebeille, F. (2003). One-carbon metabolism in plants. Regulation of tetrahydrofolate synthesis during germination and seedling development. Plant Physiology, 131(March), 1431–1439. https://doi.org/10.1104/pp.016915
- Jiang, Z.-Q., Pulkkinen, M., Wang, Y.-J., Lampi, A.-M., Stoddard, F. L., Salovaara, H., … Sontag-Strohm, T. (2016). Faba bean flavour and technological property improvement by thermal pre-treatments. LWT - Food Science and Technology, 68, 295–305. https://doi.org/10.1016/j.lwt.2015.12.015
- Jogihalli, P., Singh, L., Kumar, K., & Sharanagat, V. S. (2017). Physico-functional and antioxidant properties of sand-roasted chickpea (Cicer arietinum). Food Chemistry, 237, 1124–1132. https://doi.org/10.1016/j.foodchem.2017.06.069
- Kaur, M., Sandhu, K. S., & Singh, N. (2007). Comparative study of the functional, thermal and pasting properties of flours from different field pea (Pisum sativum L.) and pigeon pea (Cajanus cajan L.) cultivars. Food Chemistry, 104(1), 259–267. https://doi.org/10.1016/j.foodchem.2006.11.037
- Kaur, M., & Singh, N. (2005). Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chemistry, 91(3), 403–411. https://doi.org/10.1016/j.foodchem.2004.06.015
- Khattab, R. Y., & Arntfield, S. D. (2009). Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT - Food Science and Technology, 42(6), 1113–1118. https://doi.org/10.1016/j.lwt.2009.02.004
- Lewis, E. D., Kosik, S. J., Zhao, Y. Y., Jacobs, R. L., Curtis, J. M., & Field, C. J. (2014). Total choline and choline-containing moieties of commercially available pulses. Plant Foods for Human Nutrition, 69(2), 115–121. https://doi.org/10.1007/s11130-014-0412-2
- Mang, D. Y., Abdou, A. B., Njintang, N. Y., Djiogue, E. J. M., Bernard, C., Scher, J., & Mbofung, M. C. (2015). Effect of dehulling and boiling on the physico-chemical, functional and pasting properties of two varieties of Mucuna bean (Mucuna pruriens L.) flours. Journal of Food Measurement and Characterization, 9(3), 435–447. https://doi.org/10.1007/s11694-015-9251-6
- Marisela, G., Yannellis, B., & Alexia, T. (2007). Chemical composition, antioxidant capacity and functionality of raw and processed Phaseolus lunatus. Journal of the Science of Food and Agriculture, 87, 2801–2809. https://doi.org/10.1002/jsfa
- Martín-Cabrejas, M. A., Ariza, N., Esteban, R., Mollá, E., Waldron, K., & López-Andréu, F. J. (2003). Effect of germination on the carbohydrate composition of the dietary fiber of peas (Pisum sativum L.). Journal of Agricultural and Food Chemistry, 51(5), 1254–1259. https://doi.org/10.1021/jf0207631
- NFA (2012). Riksmaten - vuxna 2010–11: Livsmedels- och näringsintag bland vuxna i Sverige (swedish). Uppsala, Sweden: NFA.
- NFA (2018). Food database. Retrieved June 21, 2018, from http://www7.slv.se/SokNaringsinnehall/Home/FoodDetailsMyList
- Olsson, C. (2017). Expanding the grain legume food production in Southern Sweden industry. Uppsala, Sweden: Swedish University of Agricultural Sciences.
- Patterson, K. Y., Bhagwat, S. A., Williams, J. R., Howe, J. C., Holden, J. M., Zeisel, S. H., … Mar, M. (2008). USDA database for the choline content of common foods. Maryland: Nutrient Data Laboratory. https://doi.org/10.15482/USDA.ADC/1178141
- Prinyawiwatkul, W., Beuchat, L. R., McWatters, K. H., & Phillips, R. D. (1997). Functional properties of cowpea (Vigna unguiculata) flour as affected by soaking, boiling, and fungal fermentation. Journal of Agricultural and Food Chemistry, 45(2), 480–486. https://doi.org/10.1021/jf9603691
- Ramdath, D., Renwick, S., & Duncan, A. M. (2016). The role of pulses in the dietary management of diabetes. Canadian Journal of Diabetes, 40(4), 355–363. https://doi.org/10.1016/j.jcjd.2016.05.015
- Rychlik, M., Englert, K., Kapfer, S., & Kirchhoff, E. (2007). Folate contents of legumes determined by optimized enzyme treatment and stable isotope dilution assays. Journal of Food Composition and Analysis, 20(5), 411–419. https://doi.org/10.1016/j.jfca.2006.10.006
- Sánchez-Chino, X., Jiménez-Martínez, C., Dávila-Ortiz, G., Álvarez-González, I., & Madrigal-Bujaidar, E. (2015). Nutrient and nonnutrient components of legumes, and its chemopreventive activity: A review. Nutrition and Cancer, 67(3), 401–410. https://doi.org/10.1080/01635581.2015.1004729
- Sathe, S. K., Deshpande, S., & Salunkhe, D. K. (1982). Functional properties of lupin seed (Lupinus mutabilis) proteins and protein concentrates. Journal of Food Science, 47, 491–497. https://doi.org/10.1111/j.1365-2621.1982.tb10110.x
- Shohag, M. J. I., Wei, Y., & Yang, X. (2012). Changes of folate and other potential health-promoting phytochemicals in legume seeds as affected by germination. Journal of Agricultural and Food Chemistry, 60(36), 9137–9143. https://doi.org/10.1021/jf302403t
- Siddiq, M., Ravi, R., Harte, J. B., & Dolan, K. D. (2010). Physical and functional characteristics of selected dry bean (Phaseolus vulgaris L.) flours. LWT - Food Science and Technology, 43(2), 232–237. https://doi.org/10.1016/j.lwt.2009.07.009
- Tosh, S., Farnworth, E., Brummer, Y., Duncan, A., Wright, A., Boye, J., … Benali, M. (2013). Nutritional profile and carbohydrate characterization of spray-dried lentil, pea and chickpea ingredients. Foods, 2(3), 338–349. https://doi.org/10.3390/foods2030338
- USDA (2018). USDA food composition databases. Retrieved June 21, 2018, from https://ndb.nal.usda.gov/ndb/nutrients/report?nutrient1=421&nutrient2=&nutrient3=&fg=16&max=25&subset=0&offset=0&sort=c&totCount=133&measureby=g
- Wang, N., Hatcher, D. W., & Gawalko, E. J. (2008). Effect of variety and processing on nutrients and certain anti-nutrients in field peas (Pisum sativum). Food Chemistry, 111(1), 132–138. https://doi.org/10.1016/j.foodchem.2008.03.047
- Wang, N., Hatcher, D. W., Toews, R., & Gawalko, E. J. (2009). Influence of cooking and dehulling on nutritional composition of several varieties of lentils (Lens culinaris). LWT - Food Science and Technology, 42(4), 842–848. https://doi.org/10.1016/j.lwt.2008.10.007
- Wang, N., Hatcher, D. W., Tyler, R. T., Toews, R., & Gawalko, E. J. (2010). Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Research International, 43(2), 589–594. https://doi.org/10.1016/j.foodres.2009.07.012
- Xu, Y., Cartier, A., Obielodan, M., Jordan, K., Hairston, T., Shannon, A., & Sismour, E. (2016). Nutritional and anti-nutritional composition, and in vitro protein digestibility of Kabuli chickpea (Cicer arietinum L.) as affected by differential processing methods. Journal of Food Measurement and Characterization, 10(3), 625–633. https://doi.org/10.1007/s11694-016-9346-8