Trench investigation to quantify debris flow activity for landslide hazard mapping in populated areas: Lessons learned from Gol, southern Norway
Corresponding Author
Raymond S. Eilertsen
Geological Survey Of Norway, Tromsø, Norway
Correspondence
Raymond S. Eilertsen, Geological Survey of Norway, Framsenteret, P.B. 6606 Langnes, N-9296 Tromsø, Norway.
Email: [email protected]
Search for more papers by this authorGro Sandøy
Geological Survey of Norway, Trondheim, Norway
Norconsult, Retirovegen 4, Ålesund, Norway
Search for more papers by this authorReginald Hermanns
Geological Survey of Norway, Trondheim, Norway
Search for more papers by this authorAnders Romundset
Geological Survey of Norway, Trondheim, Norway
Search for more papers by this authorLena Rubensdotter
Geological Survey of Norway, Trondheim, Norway
Search for more papers by this authorCorresponding Author
Raymond S. Eilertsen
Geological Survey Of Norway, Tromsø, Norway
Correspondence
Raymond S. Eilertsen, Geological Survey of Norway, Framsenteret, P.B. 6606 Langnes, N-9296 Tromsø, Norway.
Email: [email protected]
Search for more papers by this authorGro Sandøy
Geological Survey of Norway, Trondheim, Norway
Norconsult, Retirovegen 4, Ålesund, Norway
Search for more papers by this authorReginald Hermanns
Geological Survey of Norway, Trondheim, Norway
Search for more papers by this authorAnders Romundset
Geological Survey of Norway, Trondheim, Norway
Search for more papers by this authorLena Rubensdotter
Geological Survey of Norway, Trondheim, Norway
Search for more papers by this authorAbstract
We here describe the results of stratigraphic and sedimentological examinations of debris flow deposits at Breidokk, Gol, southern Norway. The deposits are situated at the valley floor, below a steep slope with three large and several smaller debris flow channels incised into the thick till cover. The study area is populated and with abundant infrastructure such as roads, public and private buildings and other types of infrastructure, including underground water pipes and cables. Six, 10–15 m long and 1–3 m deep trenches were dug out with an excavator and examined. The sediments in the trenches consist of moraine-, glaciofluvial/fluvial- and debris flow deposits. The latter consist of matrix supported, unsorted, massive beds from 1 cm to more than 1 m in thickness, with clasts up to 80 cm in diameter. A total of 16 post glacial debris flow beds are identified in five of the six trenches, representing a minimum of eight individual debris flow events. This is probably an underestimation of the debris flow activity through postglacial times as the location of the trenches was in large determined by infrastructure and were not optimally placed for mapping all debris flow deposits in the area. Also, correlation between trenches proved difficult. A total of 37 radiocarbon ages of buried soil and other organic material situated above and below debris flow deposits, together with the sedimentological and stratigraphical interpretation, show that debris flow activity has prevailed throughout the Holocene, also within the last 1000 years. A possible increase in activity within the last 3–4000 years BP has been noted. This is important knowledge to aid in the interpretation of the Quaternary history of the area but also to determine the hazard zones.
Open Research
DATA AVAILABILITY STATEMENT
Data can be shared on request to the first author.
REFERENCES
- R.L. Bates & J.A. Jackson (Eds). (1987) Glossary of geology, 3rd edition. Virginia: American Geological Institute, Fall Church.
- Blikra, L.H. (1986). Glasialgeologi og skråningsprosessar i Skjerdingsdalen og Grasdalen, Stryn, indre Nordfjord. [Glacial geology and slope processes]. Unpublished Cand. Scient. thesis, University of Bergen.
- Blikra, L.H. & Nemec, W. (1993) Postglacial avalanche activity in western Norway: depositional facies sequences, chronostratigraphy and palaeoclimatic implications. Paläoklimaforschung, 11, 143–162.
- Blikra, L.H. & Nemec, W. (1998) Postglacial colluvium in western Norway: depositional processes, facies and palaeoclimatic record. Sedimentology, 45(5), 909–959. Available from: https://doi.org/10.1046/j.1365-3091.1998.00200.x
- Blikra, L.H. & Nemec, W. (2000) Reply: postglacial colluvium in western Norway: depositional processes, facies and palaeoclimatic record. Sedimentology, 47(5), 1053–1068. Available from: https://doi.org/10.1046/j.1365-3091.2000.00340.x
- Bronk Ramsey, C. (2009) Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337–360. Available from: https://doi.org/10.1017/S0033822200033865
- Collinson, J.D. & Thompson, D.B. (1989) Sedimentary structures, 2nd edition. London: Unwin Hyman.
- Curry, A.M. (2000) Holocene reworking of drift-mantled hillslopes in the Scottish highlands. Journal of Quaternary Science, 15(5), 529–541. Available from: https://doi.org/10.1002/1099-1417(200007)15:5<529::AID-JQS531>3.0.CO;2-D
- Eilertsen, R.S., Corner, G.D. & Hansen, L. (2015) Using LiDAR data to characterize and distinguish between deltaic, fluvial and glaciofluvial terraces in a fjord-valley setting. GFF, 137(4), 353–361. Available from: https://doi.org/10.1080/11035897.2014.1111409
- Fischer, L., Rubensdotter, L., Sletten, K., Stalsberg, K., Melchiorre, C., Horton, P., et al. (2012) Debris flow modelling for susceptibility mapping at regional to national scale in Norway. In: E. Eberhardt, C. Froese, S. Leroueil & K. Turner (Eds.) Landslides and engineered slopes: protecting society through improved understanding: Proceedings of the 11th International and 2nd North American Symposium on Landslides and Engineered Slopes, Banff, Canada, 3-8 June. London: Taylor & Francis Group, pp. 723–729.
- Fisher, T.G. & Shaw, J. (1992) A depositional model for Rogen moraine, with examples from the Avalon peninsula, Newfoundland. Canadian Journal of Earth Sciences, 29(4), 669–686. Available from: https://doi.org/10.1139/e92-058
- Hanssen-Bauer, I., Førland, E.J., Haddeland, I., Hisdal, H., Lawrence, D, Mayer, S., Nesje, A., Nilsen, J.E.Ø., Sandven, S., Sandø, A.B., Sorteberg, A., Ådlandsvik, B., Andreassen, L.M., Beldring, S., Bjune, A., Breili, K., Dahl, C.A., Dyrrdal, A.V., Isaksen, K., Haakenstad, H., Hygen, H.O., Langehaug, H.R., Lauritzen, S.E., Melvold, K., Mezghani, A., Ravndal, O.R., Risebrobakken, B., Roald, L., Sande, H., Simpson, M.J.R., Skagseth, Ø., Skaugen, T., Skogen, M., Støren, E.N., Tveito, O.E., & Wong, W.K. (2017). Climate in Norway 2100 – a knowledge base for climate adaptation. Norwegian Environment Agency, Report 1/2017, 48 pp. (https://www.miljodirektoratet.no/globalassets/publikasjoner/M741/M741.pdf).
- Holmes, A. (1965) Principles of physical geology, 2nd edition. London: Thomas Nelson.
- Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J. & Svendsen, J.I. (2015) The last Eurasian ice sheets—A chronological database and timeslice reconstruction, DATED-1. Boreas, 45(1), 1–45. Available from: https://doi.org/10.1111/bor.12142
10.1111/bor.12142 Google Scholar
- Hungr, O., Leroueil, S. & Picarelli, L. (2014) The Varnes classification of landslide types, an update. Landslides, 11(2), 167–194. Available from: https://doi.org/10.1007/s10346-013-0436-y
- Hungr, O., McDougall, S. & Bovis, M. (2005) Entrainment of material by debris flows. In: Debris-flow hazards and related phenomena. Berlin, Heidelberg: Springer Praxis Books. Springer, pp. 135–158.
10.1007/3-540-27129-5_7 Google Scholar
- Jaedicke, C., Solheim, A., Blikra, L.H., Stalsberg, K., Sorteberg, A., Aaheim, A., et al. (2008) Spatial and temporal variations of Norwegian geohazards in a changing climate, the GeoExtreme project. Natural Hazards and Earth System Sciences, 8(4), 893–904. Available from: https://doi.org/10.5194/nhess-8-893-2008
- Jakob, M. (2005) Debris-flow hazard analysis. In: M. Jakob & O. Hungr (Eds.) Debris-flow hazards and related phenomena. Berlin: Heidelberg: Springer Berlin Heidelberg, pp. 411–443 https://doi.org/10.1007/3-540-27129-5_17
10.1007/3-540-27129-5_17 Google Scholar
- Jakob, M. & Friele, P. (2010) Frequency and magnitude of debris flows on Cheekye River, British Columbia. Geomorphology, 114(3), 382–395. Available from: https://doi.org/10.1016/j.geomorph.2009.08.013
- Kristiansen, K.J. & Sollid, J.L. (1985). Buskerud fylke – kvartærgeologi og geomorfologi. [Buskerud County—Quaternary Geology and geomorphology]. Map 1:250 000. Geografisk Institutt, Universitetet i Oslo.
- Kristiansen, K.J. & Sollid, J.L. (1996). Buskerud fylke—kvartærgeologi og geomorfologi, beskrivelse til kart 1:250 000. [Buskerud County—Quaternary Geology and geomorphology, description to map 1:250 000]. Fylkesmannen i Buskerud, Miljøvernavdelingen, Report nr. 7.
- Kronholm, K. (2018). Rapport nr 7-2018 Skredfarekartlegging i Gol og Hemsedal kommuner [Report nr 7-2018 Landslide hazard mapping in Gol and Hemsedal Municipalities]. The Norwegian Water Resources and Energy Directorate, Report 7-2018, pp. 166, http://publikasjoner.nve.no/rapport/2018/rapport2018_07.pdf
- Matthews, J.A., Dahl, S.-O., Berrisford, M.S., Nesje, A., Dresser, P.Q. & Dumayne-Peaty, L. (1997) A preliminary history of Holocene colluvial (debris-flow) activity, Leirdalen, Jotunheimen, Norway. Journal of Quaternary Science, 45(2), 117–129. Available from: https://doi.org/10.1002/(SICI)1099-1417(199703/04)12:2<117::AID-JQS296>3.0.CO;2-1
- Matthews, J.A., Dahl, S.-O., Dresser, P.Q., Berrisford, M.S., Lie, Ø., Nesje, A., et al. (2009) Radiocarbon chronology of Holocene colluvial (debris-flow) events at Sletthamn, Jotunheimen, southern Norway: a window on the changing frequency of extreme climatic events and their landscape impact. The Holocene, 19(8), 1107–1129. Available from: https://doi.org/10.1177/0959683609344674
- Nesje, A., Dahl, S.O. & Løvlie, R. (1995) Late Holocene glaciers and avalanche activity in the Ålfotbreen area, western Norway: evidence from a lacustrine sedimentary record. Norsk Geologisk Tidsskrift, 75, 120–126.
- Nesje, A., Kvamme, M., Rye, N. & Løvlie, R. (1991) Holocene glacial and climatic history of the Jostedalsbreen region, western Norway; evidence from lake sediments and terrestrial deposits. Quaternary Science Reviews, 10(1), 87–114. Available from: https://doi.org/10.1016/0277-3791(91)90032-P
- Pierson, T.C. & Costa, J.E. (1987) A rheologic classification of subaerial sediment-water flows. Reviews in Engineering Geology, 7, 1–12. Available from: https://doi.org/10.1130/REG7-p1
10.1130/REG7-p1 Google Scholar
- Reimer, P.J., Austin, W.E., Bard, E., Bayliss, A., Blackwell, P.G., Ramsey, C.B., et al. (2020) The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon, 62(4), 725–757. Available from: https://doi.org/10.1017/RDC.2020.41
- Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., et al. (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55(4), 1869–1887. Available from: https://doi.org/10.2458/azu_js_rc.55.16947
- Roering, J.J., Mackey, B.H., Marshall, J.A., Sweeney, K.E., Deligne, N.I., Booth, A.M., et al. (2013) 'You are here': connecting the dots with airborne lidar for geomorphic work. Geomorphology, 200, 172–183. Available from: https://doi.org/10.1016/j.geomorph.2013.04.009
- Rubensdotter, L. & Sandøy, G. (2017). Kvartærgeologisk kart, M 1: 10 000, Gol, Gol Kommune. [Quaternary map 1:10 000, Gol, Gol municipality]. Geological Survey of Norway, http://www.ngu.no/upload/Publikasjoner/Kart/KV10/Gol_KV10.pdf
- Sandersen, F. (1997) The influence of meteorological factors on the initiation of debris flows in Norway. In: J.A. Matthews, D. Brunsden, B. Frenzel, B. Gläser & M. Weiß (Eds.) Rapid mass movement as a source of climatic evidence for the Holocene, Vol. 19. Paläoklimaforschung. Stuttgart: Gustav Fischer Verlag, pp. 321–332.
- Sass, O. (2006) Determination of the internal structure of alpine talus deposits using different geophysical methods (Lechtaler Alps, Austria). Geomorphology, 80(1), 45–58. Available from: https://doi.org/10.1016/j.geomorph.2005.09.006
- Shaw, J. (1982) Melt-out till in the Edmonton area, Alberta, Canada. Canadian Journal of Earth Sciences, 19(8), 1548–1569. Available from: https://doi.org/10.1139/e82-134
- Sletten, K. (2002). Holocene mass-movement processes in Norway, and the development of a moraine complex on Svalbard. PhD Thesis, Department of Geology, University of Bergen, Norway, pp. 284.
- Sletten, K. & Blikra, L.H. (2007) Holocene colluvial (debris-flow and water-flow) processes in eastern Norway: stratigraphy, chronology and palaeoenvironmental implications. Journal of Quaternary Science, 22(6), 619–635. Available from: https://doi.org/10.1002/jqs.1086
- Sletten, K., Blikra, L.H., Ballantyne, C.K., Nesje, A. & Dahl, S.O. (2003) Holocene debris flows recognized in a lacustrine sedimentary succession: sedimentology, chronostratigraphy and cause of triggering. The Holocene, 13(6), 907–920. Available from: https://doi.org/10.1191/0959683603hl673rp
- van Asch, T.W.J. (1997) The temporal activity of landslides and its climatological signals. In: J.A. Matthews, D. Brunsden, B. Frenzel, B. Gläser & M. Weiß (Eds.) Rapid mass movement as a source of climatic evidence for the Holocene, Vol. 19. Paläoklimaforschung. Stuttgart: Gustav Fischer Verlag, pp. 7–16.
- Wells, N.A. (1984) Sheet debris flows and sheetflood conglomerates in Cretaceous cool-maritime alluvial fans, South Orkney Islands, Antactica. In: E.H. Koster & R.J. Steel (Eds.) Sedimentology of gravels and conglomerates, Vol. 10. Calgary: Canadian Society of Petroloeum Geologists Memoirs, pp. 133–145.
- Wentworth, C.K. (1922) A scale of grade and class terms for clastic sediments. Journal of Sedimentological Petrology, 30(5), 377–392. Available from: https://doi.org/10.1086/622910
10.1086/622910 Google Scholar