Hydrothermal carbonization processes applied to wet organic waste streams
Corresponding Author
Didem Özçimen
Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yıldız Technical University, Istanbul, Turkey
Correspondence
Didem Özçimen, Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yıldız Technical University, 34220, Istanbul, Turkey.
Email: [email protected]
Search for more papers by this authorBenan İnan
Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yıldız Technical University, Istanbul, Turkey
Search for more papers by this authorAnıl Tevfik Koçer
Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yıldız Technical University, Istanbul, Turkey
Search for more papers by this authorStephane Bostyn
ICARE, Institut de Combustion, Aérothermique, Réactivité et Environnement UPR3021 du CNRS-INSIS, Orléans, France
Search for more papers by this authorİskender Gökalp
ICARE, Institut de Combustion, Aérothermique, Réactivité et Environnement UPR3021 du CNRS-INSIS, Orléans, France
Mechanical Engineering Department, Middle East Technical University, Ankara, Turkey
Search for more papers by this authorCorresponding Author
Didem Özçimen
Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yıldız Technical University, Istanbul, Turkey
Correspondence
Didem Özçimen, Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yıldız Technical University, 34220, Istanbul, Turkey.
Email: [email protected]
Search for more papers by this authorBenan İnan
Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yıldız Technical University, Istanbul, Turkey
Search for more papers by this authorAnıl Tevfik Koçer
Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Yıldız Technical University, Istanbul, Turkey
Search for more papers by this authorStephane Bostyn
ICARE, Institut de Combustion, Aérothermique, Réactivité et Environnement UPR3021 du CNRS-INSIS, Orléans, France
Search for more papers by this authorİskender Gökalp
ICARE, Institut de Combustion, Aérothermique, Réactivité et Environnement UPR3021 du CNRS-INSIS, Orléans, France
Mechanical Engineering Department, Middle East Technical University, Ankara, Turkey
Search for more papers by this authorSummary
Various organic waste streams are generated daily by human activities such as municipal, agricultural and industrial. The sustainable disposal of these organic wastes is a serious societal challenge. When the disposal process is not efficient, this type of wastes creates important pollution risks for air, soil, underground water and sea. Especially, wastes that have high moisture content cannot be eliminated cost effectively via thermo-chemical conversion by conventional processes such as pyrolysis, gasification and combustion. These processes necessitate the pre-drying of wet wastes which require additional energy input and increase the operational costs. One promising approach for the management and valorization of highly wet waste streams is the use of hydrothermal technologies. Hydrothermal carbonization is a very appropriate approach for valorizing wet organic wastes using water as a medium at high temperature and pressure under subcritical conditions. The generated “hydrochar” is a solid lignite like material that can be used for energy generation (by gasification or combustion) but also for environmental practices such as soil remediation and carbon fixation. This review focuses on the feedstock potential of wet organic wastes of sewage sludge, food wastes, various animal manure and macroalgae, and their valorization by hydrothermal carbonization. Structural, physical and energy conversion characteristics of hydrochars produced from various wet organic wastes are compared and discussed. Usage areas of hydrochars are also assessed.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- 1Berge ND, Ro KS, Mao J, Flora JRV, Chappell MA, Bae S. Hydrothermal carbonization of municipal waste streams. Environ Sci Technol. 2011; 45: 5696-5703. doi:10.1021/es2004528
- 2Donar YO, Çağlar E, Sınağ A. Preparation and characterization of agricultural waste biomass based hydrochars. Fuel. 2016; 183: 366-372. doi:10.1016/j.fuel.2016.06.108
- 3Fang J, Zhan L, Ok YS, Gao B. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J Ind Eng Chem. 2018; 57: 15-21. doi:10.1016/j.jiec.2017.08.026
- 4Fernandez ME, Ledesma B, Román S, Bonelli PR, Cukierman AL. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants. Bioresour Technol. 2015; 183: 221-228. doi:10.1016/j.biortech.2015.02.035
- 5Larsson S, Palmqvist E, Hahn-Hägerdal B, et al. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol. 1999; 24: 151-159. doi:10.1016/S0141-0229(98)00101-X
- 6Nizamuddin S, Mubarak NM, Tiripathi M, Jayakumar NS, Sahu JN, Ganesan P. Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel. 2016; 163: 88-97. doi:10.1016/j.fuel.2015.08.057
- 7Stemann J, Putschew A, Ziegler F. Hydrothermal carbonization: process water characterization and effects of water recirculation. Bioresour Technol. 2013; 143: 139-146. doi:10.1016/j.biortech.2013.05.098
- 8Missaoui A, Bostyn S, Belandria V, Cagnon B, Sarh B, Gökalp I. Hydrothermal carbonization of dried olive pomace: energy potential and process performances. J Anal Appl Pyrolysis. 2017; 128: 281-290. doi:10.1016/j.jaap.2017.09.022
- 9Smith AM, Singh S, Ross AB. Fate of inorganic material during hydrothermal carbonisation of biomass: influence of feedstock on combustion behaviour of hydrochar. Fuel. 2016; 169: 135-145. doi:10.1016/J.FUEL.2015.12.006
- 10Du Z, Hu B, Shi A, et al. Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Bioresour Technol. 2012; 126: 354-357. doi:10.1016/j.biortech.2012.09.062
- 11Kambo HS, Dutta A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev. 2015; 45: 359-378. doi:10.1016/j.rser.2015.01.050
- 12Liu Z, Balasubramanian R, Hoekman SK. Production of renewable solid fuel hydrochar from waste biomass by sub-and supercritical water treatment. In: Z Fang, C Xu, eds. Near-Critical and Supercritical Water and Their Applications for Biorefineries. Dordrecht: Springer; 2014: 231-260.
10.1007/978-94-017-8923-3_9 Google Scholar
- 13 Eurostat. Eurostat - Data Explorer. Accessed November 16, 2021. http://appsso.eurostat.ec.europa.eu/nui/show.do?lang=en&dataset=env_ww_spd
- 14Tchobanoglous G, Burton FL, Stensel HD. Wastewater Engineering Treatment and Reuse. Boston: McGraw-Hill Higher Education; 2003.
- 15Wilk M, Śliz M, Lubieniecki B. Hydrothermal co-carbonization of sewage sludge and fuel additives: combustion performance of hydrochar. Renew Energy. 2021; 178: 1046-1056. doi:10.1016/J.RENENE.2021.06.101
- 16Özbay İ, Özbay B, Akdemir U. Biodrying for fuel recovery from sewage sludge: an integrated evaluation by ultimate and proximate analyses. Environ Prog Sustain Energy. 2021; 41(1):e13723. doi:10.1002/EP.13723
- 17Singh V, Phuleria HC, Chandel MK. Estimation of energy recovery potential of sewage sludge in India: waste to watt approach. J Clean Prod. 2020; 276:122538. doi:10.1016/J.JCLEPRO.2020.122538
- 18Yoh S, Sitepu T, Ambarita H. Proximate, ultimate and calorific value analyses of paper industry sludge at different moisture content. IOP Conf Ser Mater Sci Eng. 2020; 851:012052. doi:10.1088/1757-899X/851/1/012052
- 19Chen Y, Zhang L, Zhang Y, et al. Pressurized pyrolysis of sewage sludge: process performance and products characterization. Journal of Analytical and Applied Pyrolysis. 2019; 139: 205-212.
- 20Modaresi ZK, Karimi G, Mowla D. Study of co-combustion of dried sewage sludge with coke: Thermogravimetric assessment and gaseous emissions. J Environ Chem Eng. 2019; 7:102871. doi:10.1016/J.JECE.2018.102871
- 21Yan M, He L, Prabowo B, et al. Effect of pressure and atmosphere during hydrothermal treatment on the properties of sewage sludge-derived solid fuel. J Mater Cycles Waste Manag. 2018; 20: 1594-1604. doi:10.1007/s10163-018-0723-8
- 22Afolabi OOD, Sohail M. Comparative evaluation of conventional and microwave hydrothermal carbonization of human biowaste for value recovery. Water Sci Technol. 2017; 75: 2852-2863. doi:10.2166/wst.2017.164
- 23Afolabi OOD, Sohail M, Thomas CLP. Characterization of solid fuel chars recovered from microwave hydrothermal carbonization of human biowaste. Energy. 2017; 134: 74-89. doi:10.1016/j.energy.2017.06.010
- 24Kim D, Park S, Park KY. Upgrading the fuel properties of sludge and low rank coal mixed fuel through hydrothermal carbonization. Energy. 2017; 141: 598-602. doi:10.1016/j.energy.2017.09.113
- 25Pulka J, Wiśniewski D, Gołaszewski J, Białowiec A. Is the biochar produced from sewage sludge a good quality solid fuel? Arch Environ Prot. 2016; 42: 125-134. doi:10.1515/aep-2016-0043
10.1515/aep-2016-0043 Google Scholar
- 26Gai C, Chen M, Liu T, Peng N, Liu Z. Gasification characteristics of hydrochar and pyrochar derived from sewage sludge. Energy. 2016; 113: 957-965. doi:10.1016/j.energy.2016.07.129
- 27Folgueras MB, Alonso M, Díaz RM. Influence of sewage sludge treatment on pyrolysis and combustion of dry sludge. Energy. 2013; 55: 426-435. doi:10.1016/j.energy.2013.03.063
- 28Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E. Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrolysis. 2013; 101: 72-78. doi:10.1016/j.jaap.2013.02.010
- 29Lu L, Namioka T, Yoshikawa K. Effects of hydrothermal treatment on characteristics and combustion behaviors of municipal solid wastes. Appl Energy. 2011; 88: 3659-3664. doi:10.1016/j.apenergy.2011.04.022
- 30Bridgwater AV, Peacocke GVC. Fast pyrolysis processes for biomass. Renew Sustain Energy Rev. 2000; 4: 1-73. doi:10.1016/S1364-0321(99)00007-6
- 31Wilk M, Magdziarz A, Jayaraman K, Szymańska-Chargot M, Gökalp I. Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study. Biomass Bioenergy. 2019; 120: 166-175. doi:10.1016/J.BIOMBIOE.2018.11.016
- 32He C, Giannis A, Wang JY. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior. Appl Energy. 2013; 111: 257-266. doi:10.1016/j.apenergy.2013.04.084
- 33Peng C, Zhai Y, Zhu Y, et al. Production of char from sewage sludge employing hydrothermal carbonization: char properties, combustion behavior and thermal characteristics. Fuel. 2016; 176: 110-118. doi:10.1016/j.fuel.2016.02.068
- 34Benavente V, Calabuig E, Fullana A. Upgrading of moist agro-industrial wastes by hydrothermal carbonization. J Anal Appl Pyrolysis. 2015; 113: 89-98. doi:10.1016/J.JAAP.2014.11.004
- 35Zhao P, Shen Y, Ge S, Yoshikawa K. Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization. Energ Conver Manage. 2014; 78: 815-821. doi:10.1016/j.enconman.2013.11.026
- 36Danso-Boateng E, Shama G, Wheatley AD, Martin SJ, Holdich RG. Hydrothermal carbonisation of sewage sludge: effect of process conditions on product characteristics and methane production. Bioresour Technol. 2015; 177: 318-327. doi:10.1016/j.biortech.2014.11.096
- 37Paneque M, De la Rosa JM, Kern J, Reza MT, Knicker H. Hydrothermal carbonization and pyrolysis of sewage sludges: what happen to carbon and nitrogen? J Anal Appl Pyrolysis. 2017; 128: 314-323. doi:10.1016/j.jaap.2017.09.019
- 38Maceiras R, Cancela Á, Sánchez Á, Pérez L, Alfonsin V. Biofuel and biomass from marine macroalgae waste. Energy Sources A: Recovery Util Environ Eff. 2016; 38: 1169-1175. doi:10.1080/15567036.2013.862584
- 39Michalak I, Wilk R, Chojnacka K. Bioconversion of Baltic seaweeds into organic compost. Waste Biomass Valorization. 2017; 8: 1885-1895. doi:10.1007/s12649-016-9738-3
- 40Arvanitoyannis IS, Kassaveti A. Fish industry waste: treatments, environmental impacts, current and potential uses. Int J Food Sci Technol. 2008; 43: 726-745. doi:10.1111/j.1365-2621.2006.01513.x
- 41Caruso G. Fishery wastes and by-products: a resource to be valorised. J Clin Oncol. 2016; 26: 12-15. doi:10.1200/JCO.2012.47.7141
- 42Koçer AT, Özçimen D. Determination of combustion characteristics and kinetic parameters of Ulva lactuca and its biochar. Biomass Convers Biorefin. 2021. doi:10.1007/s13399-020-01245-4
10.1007/s13399?020?01245?4 Google Scholar
- 43Tedesco S, Hurst G, Randviir E, Francavilla M. A comparative investigation of non-catalysed versus catalysed microwave-assisted hydrolysis of common north and south European seaweeds to produce biochemicals. Algal Res. 2021; 60:102489. doi:10.1016/J.ALGAL.2021.102489
10.1016/j.algal.2021.102489 Google Scholar
- 44Sudhakar MP, Arunkumar K, Perumal K. Pretreatment and process optimization of spent seaweed biomass (SSB) for bioethanol production using yeast (Saccharomyces cerevisiae). Renew Energy. 2020; 153: 456-471. doi:10.1016/J.RENENE.2020.02.032
- 45Zhang C, Zhang L, Gao J, et al. Evolution of the functional groups/structures of biochar and heteroatoms during the pyrolysis of seaweed. Algal Res. 2020; 48:101900. doi:10.1016/J.ALGAL.2020.101900
- 46Xu S, Hu Y, Wang S, et al. Investigation on the co-pyrolysis mechanism of seaweed and rice husk with multi-method comprehensive study. Renew Energy. 2019; 132: 266-277. doi:10.1016/J.RENENE.2018.08.002
- 47Lane DJ, Truong E, Larizza F, Chiew P, De Nys R, Van Eyk PJ. Effect of hydrothermal carbonization on the combustion and gasification behavior of agricultural residues and macroalgae: devolatilization characteristics and char reactivity. Energy Fuels. 2018; 32: 4149-4159. doi:10.1021/acs.energyfuels.7b03125
- 48Park KY, Lee K, Kim D. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization. Bioresour Technol. 2018; 258: 119-124. doi:10.1016/j.biortech.2018.03.003
- 49Toptas Tag A, Duman G, Yanik J. Influences of feedstock type and process variables on hydrochar properties. Bioresour Technol. 2018; 250: 337-344. doi:10.1016/j.biortech.2017.11.058
- 50Kannan S, Gariepy Y, Raghavan GSV. Optimization and characterization of hydrochar produced from microwave hydrothermal carbonization of fish waste. Waste Manag. 2017a; 65: 159-168. doi:10.1016/j.wasman.2017.04.016
- 51Smith AM, Ross AB. Production of bio-coal, bio-methane and fertilizer from seaweed via hydrothermal carbonisation. Algal Res. 2016; 16: 1-11. doi:10.1016/j.algal.2016.02.026
10.1016/j.algal.2016.02.026 Google Scholar
- 52Xu Q, Qian Q, Quek A, Ai N, Zeng G, Wang J. Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars. ACS Sustain Chem Eng. 2013; 1: 1092-1101. doi:10.1021/sc400118f
- 53Heilmann SM, Davis HT, Jader LR, et al. Hydrothermal carbonization of microalgae. Biomass Bioenergy. 2010; 34: 875-882. doi:10.1016/j.biombioe.2010.01.032
- 54Broch A, Jena U, Hoekman SK, Langford J. Analysis of solid and aqueous phase products from hydrothermal carbonization of whole and lipid-extracted algae. Energies. 2014; 7: 62-79. doi:10.3390/en7010062
- 55Lu Y, Levine RB, Savage PE. Fatty acids for nutraceuticals and biofuels from hydrothermal carbonization of microalgae. Ind Eng Chem Res. 2015; 54: 4066-4071. doi:10.1021/ie503448u
- 56Levine RB, Sambolin Sierra CO, Hockstad R, Obeid W, Hatcher PG, Savage PE. The use of hydrothermal carbonization to recycle nutrients in algal biofuel production. Environ Prog Sustain Energy. 2013; 32: 962-975. doi:10.1002/ep
- 57Patel N, Acharya B, Basu P. Hydrothermal carbonization (HTC) of seaweed (macroalgae) for producing hydrochar. Energies. 2021; 14:1805. doi:10.3390/EN14071805
- 58Braguglia CM, Gallipoli A, Gianico A, Pagliaccia P. Anaerobic bioconversion of food waste into energy: a critical review. Bioresour Technol. 2018; 248: 37-56. doi:10.1016/j.biortech.2017.06.145
- 59Ma Y, Yin Y, Liu Y. A holistic approach for food waste management towards zero-solid disposal and energy/resource recovery. Bioresour Technol. 2017; 228: 56-61. doi:10.1016/j.biortech.2016.12.090
- 60Mirabella N, Castellani V, Sala S. Current options for the valorization of food manufacturing waste: a review. J Clean Prod. 2014; 65: 28-41. doi:10.1016/j.jclepro.2013.10.051
- 61Zhang R, El-Mashad HM, Hartman K, et al. Characterization of food waste as feedstock for anaerobic digestion. Bioresour Technol. 2007; 98: 929-935. doi:10.1016/j.biortech.2006.02.039
- 62Xu F, Li Y, Ge X, Yang L, Li Y. Anaerobic digestion of food waste - challenges and opportunities. Bioresour Technol. 2018; 247: 1047-1058. doi:10.1016/j.biortech.2017.09.020
- 63 OECD. OECD Food Waste. Accessed November 16, 2021. https://stats.oecd.org/Index.aspx?DataSetCode=FOOD_WASTE
- 64 Statista. Statista Annual Food Waste by Select Country Worldwide; 2020. Accessed November 16, 2021. https://www.statista.com/statistics/933083/food-waste-of-selected-countries/
- 65Ferreira AF, Ribau JP, Costa M. A decision support method for biochars characterization from carbonization of grape pomace. Biomass Bioenergy. 2021; 145:105946. doi:10.1016/j.biombioe.2020.105946
- 66Alcazar-Ruiz A, Garcia-Carpintero R, Dorado F, Sanchez- Silva L. Valorization of olive oil industry subproducts: ash and olive pomace fast pyrolysis. Food Bioprod Process. 2021; 125: 37-45. doi:10.1016/j.fbp.2020.10.011
- 67Rago YP, Surroop D, Mohee R. Assessing the potential of biofuel (biochar) production from food wastes through thermal treatment. Bioresour Technol. 2018; 248: 258-264. doi:10.1016/j.biortech.2017.06.108
- 68Wang T, Zhai Y, Zhu Y, et al. Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste. Bioresour Technol. 2018b; 247: 182-189. doi:10.1016/j.biortech.2017.09.076
- 69Kannan S, Gariepy Y, Raghavan GSV. Optimization and characterization of hydrochar derived from shrimp waste. Energy Fuels. 2017b; 31: 4068-4077. doi:10.1021/acs.energyfuels.7b00093
- 70McGaughy K, Toufiq Reza M. Hydrothermal carbonization of food waste: simplified process simulation model based on experimental results. Biomass Convers Biorefin. 2017; 2017: 283-292. doi:10.1007/s13399-017-0276-4
10.1007/s13399?017?0276?4 Google Scholar
- 71Vlaskin MS, Kostyukevich YI, Grigorenko AV, et al. Hydrothermal treatment of organic waste. Russ J Appl Chem. 2017; 90: 1285-1292. doi:10.1134/S1070427217080158
- 72Erdogan E, Atila B, Mumme J, et al. Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor. Bioresour Technol. 2015; 196: 35-42. doi:10.1016/j.biortech.2015.06.115
- 73Cerda A, Artola A, Font X, Barrena R, Gea T, Sánchez A. Composting of food wastes: status and challenges. Bioresour Technol. 2018; 248: 57-67. doi:10.1016/j.biortech.2017.06.133
- 74Kosseva MR. Processing of food wastes. Adv Food Nutr Res. 2009; 58: 57-136.
- 75Du C, Abdullah JJ, Greetham D, et al. Valorization of food waste into biofertiliser and its field application. J Clean Prod. 2018; 187: 273-284. doi:10.1016/J.JCLEPRO.2018.03.211
- 76Thi NBD, Lin CY, Kumar G. Waste-to-wealth for valorization of food waste to hydrogen and methane towards creating a sustainable ideal source of bioenergy. J Clean Prod. 2016; 122: 29-41. doi:10.1016/J.JCLEPRO.2016.02.034
- 77Huang J, Qiao Y, Wang Z, Liu H, Wang B, Yu Y. Valorization of food waste via torrefaction: effect of food waste type on the characteristics of torrefaction products. Energy Fuels. 2020; 34: 6041-6051. doi:10.1021/ACS.ENERGYFUELS.0C00790/SUPPL_FILE/EF0C00790_SI_001.PDF
- 78Mazumder S, Saha P, Reza MT. Co-hydrothermal carbonization of coal waste and food waste: fuel characteristics. Biomass Convers Biorefin. 2022; 12: 3-13. doi:10.1007/s13399-020-00771-5
10.1007/s13399-020-00771-5 Google Scholar
- 79Su H, Zhou X, Zheng R, et al. Hydrothermal carbonization of food waste after oil extraction pre-treatment: study on hydrochar fuel characteristics, combustion behavior, and removal behavior of sodium and potassium. Sci Total Environ. 2021; 754:142192. doi:10.1016/j.scitotenv.2020.142192
- 80Volpe M, Wüst D, Merzari F, et al. One stage olive mill waste streams valorisation via hydrothermal carbonisation. Waste Manag. 2018; 80: 224-234. doi:10.1016/j.wasman.2018.09.021
- 81Sabio E, Álvarez-Murillo A, Román S, Ledesma B. Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: influence of the processing variables. Waste Manag. 2016; 47: 122-132. doi:10.1016/j.wasman.2015.04.016
- 82Pala M, Kantarli IC, Buyukisik HB, Yanik J. Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation. Bioresour Technol. 2014; 161: 255-262. doi:10.1016/j.biortech.2014.03.052
- 83Chen X, Lin Q, He R, Zhao X, Li G. Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresour Technol. 2017; 241: 236-243. doi:10.1016/j.biortech.2017.04.012
- 84Zhang B, Heidari M, Regmi B, et al. Hydrothermal carbonization of fruit wastes: a promising technique for generating hydrochar. Energies. 2018; 11:1-14. doi:10.3390/en11082022
- 85Nasir IM, Mohd Ghazi TI, Omar R. Anaerobic digestion technology in livestock manure treatment for biogas production: a review. Eng Life Sci. 2012; 12: 258-269. doi:10.1002/elsc.201100150
- 86Kafle GK, Kim SH. Anaerobic treatment of apple waste with swine manure for biogas production: batch and continuous operation. Appl Energy. 2013; 103: 61-72. doi:10.1016/j.apenergy.2012.10.018
- 87Cantrell K, Ro K, Mahajan D, Anjom M, Hunt PG. Role of thermochemical conversion in livestock waste-to-energy treatments: obstacles and opportunities. Ind Eng Chem Res. 2007; 46: 8918-8927. doi:10.1021/ie0616895
- 88Bernal MP, Sommer SG, Chadwick D, Qing C, Guoxue L, Michel FC. Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. Adv Agron. 2017; 144: 143-233. doi:10.1016/BS.AGRON.2017.03.002
- 89Wu K, Gao Y, Zhu G, et al. Characterization of dairy manure hydrochar and aqueous phase products generated by hydrothermal carbonization at different temperatures. J Anal Appl Pyrolysis. 2017; 127: 335-342. doi:10.1016/j.jaap.2017.07.017
- 90Reza A, Freitas X, Yang S, Hiibel H, Lin CC. Hydrothermal carbonization (HTC) of cow manure:carbon and nitrogen distributions in HTC products. Environ Prog Sustain Energy. 2016; 35: 1002-1011. doi:10.1002/ep
- 91Wu H, Hanna MA, Jones DD. Thermogravimetric characterization of dairy manure as pyrolysis and combustion feedstocks. Waste Manag Res. 2012; 30: 1066-1071. doi:10.1177/0734242X12452906
- 92Nizamuddin S, Baloch HA, Griffin GJ, et al. An overview of effect of process parameters on hydrothermal carbonization of biomass. Renew Sustain Energy Rev. 2017; 73:1289-1299.
10.1016/j.rser.2016.12.122 Google Scholar
- 93Sharma HB, Sarmah AK, Dubey B. Hydrothermal carbonization of renewable waste biomass for solid biofuel production: a discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renew Sustain Energy Rev. 2020; 123:109761. doi:10.1016/J.RSER.2020.109761
- 94Shen Y. A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass Bioenergy. 2020; 134:105479. doi:10.1016/J.BIOMBIOE.2020.105479
- 95Wang T, Zhai Y, Zhu Y, Li C, Zeng G. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew Sustain Energy Rev. 2018a; 90: 223-247. doi:10.1016/J.RSER.2018.03.071
- 96Román S, Libra J, Berge N, et al. Hydrothermal carbonization: modeling, final properties design and applications: a review. Energies. 2018; 11: 216. doi:10.3390/en11010216
- 97Özçimen D, Ersoy-Meriçboyu A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renew Energy. 2010; 35: 1319-1324. doi:10.1016/j.renene.2009.11.042
- 98Özçimen D, İnan B, Akış S, Koçer AT. Utilization alternatives of algal wastes for solid algal products. In: A Prokop, ed. Algal Biorefineries. Switzerland: Springer; 2015: 393-418.
10.1007/978-3-319-20200-6_12 Google Scholar
- 99Lin Y, Ma X, Peng X, Hu S, Yu Z, Fang S. Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge. Appl Therm Eng. 2015; 91: 574-582. doi:10.1016/j.applthermaleng.2015.08.064
- 100Xu X, Jiang E. Treatment of urban sludge by hydrothermal carbonization. Bioresour Technol. 2017; 238: 182-187. doi:10.1016/j.biortech.2017.03.174
- 101Méndez A, Gascó G, Ruiz B, Fuente E. Hydrochars from industrial macroalgae “Gelidium Sesquipedale” biomass wastes. Bioresour Technol. 2019; 275: 386-393. doi:10.1016/J.BIORTECH.2018.12.074
- 102Jain A, Balasubramanian R, Srinivasan MP. Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J. 2016; 283: 789-805. doi:10.1016/j.cej.2015.08.014
- 103Khan TA, Saud AS, Jamari SS, Rahim MHA, Park JW, Kim HJ. Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: a review. Biomass Bioenergy. 2019; 130:105384. doi:10.1016/J.BIOMBIOE.2019.105384
- 104Lachos-Perez D, César Torres-Mayanga P, Abaide ER, Zabot GL, De Castilhos F. Hydrothermal carbonization and liquefaction: differences, progress, challenges, and opportunities. Bioresour Technol. 2022; 343:126084. doi:10.1016/J.BIORTECH.2021.126084
- 105Heidari M, Dutta A, Acharya B, Mahmud S. A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. J Energy Inst. 2019; 92: 1779-1799. doi:10.1016/J.JOEI.2018.12.003
- 106Titirici MM, Thomas A, Yu SH, Müller JO, Antonietti M. A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chem Mater. 2007; 19: 4205-4212. doi:10.1021/cm0707408
- 107Ameen M, Zamri NM, May ST, et al. Effect of acid catalysts on hydrothermal carbonization of Malaysian oil palm residues (leaves, fronds, and shells) for hydrochar production. Biomass Convers Biorefin. 2022; 12: 103-114. doi:10.1007/S13399-020-01201-2/FIGURES/7
- 108Volpe M, Luz FC, Saha N, et al. Enhancement of energy and combustion properties of hydrochar via citric acid catalysed secondary char production. Biomass Convers Biorefin. 2021; 1: 1-12. doi:10.1007/S13399-021-01816-Z/FIGURES/3
10.1007/S13399?021?01816?Z/FIGURES/3 Google Scholar
- 109Duman G, Tag AT, Ucar S, Yanik J. Comparative evaluation of dry and wet carbonization of agro industrial wastes for the production of soil improver. J Environ Chem Eng. 2018; 6: 3366-3375. doi:10.1016/j.jece.2018.05.009
- 110Wu K, Zhang X, Yuan Q. Effects of process parameters on the distribution characteristics of inorganic nutrients from hydrothermal carbonization of cattle manure. J Environ Manage. 2018; 209: 328-335. doi:10.1016/j.jenvman.2017.12.071
- 111Özçimen D. An approach to the characterization of biochar and bio-oil. In: Renewable Energy for Sustainable Future. iConcept Press; 2013; 41-58.
- 112Yao Z, Ma X. Hydrothermal carbonization of Chinese fan palm. Bioresour Technol. 2019; 282: 28-36. doi:10.1016/j.biortech.2019.02.130
- 113Zhang H, Xue G, Chen H, Li X, Chen S. Revealing the heating value characteristics of sludge-based hydrochar in hydrothermal process: from perspective of hydrolysate. Water Res. 2021; 198:117170. doi:10.1016/J.WATRES.2021.117170
- 114Gao P, Zhou Y, Meng F, et al. Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy. 2016; 97: 238-245. doi:10.1016/j.energy.2015.12.123
- 115Li J, Zhao P, Li T, Lei M, Yan W, Ge S. Pyrolysis behavior of hydrochar from hydrothermal carbonization of pinewood sawdust. J Anal Appl Pyrolysis. 2020; 146:104771. doi:10.1016/J.JAAP.2020.104771
- 116Sun Y, Gao B, Yao Y, et al. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem Eng J. 2014; 240: 574-578. doi:10.1016/J.CEJ.2013.10.081
- 117Fuertes AB, Arbestain MC, Sevilla M, et al. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Aust J Soil Res. 2010; 48: 618-626.
- 118Kalderis D, Papameletiou G, Kayan B. Assessment of orange peel hydrochar as a soil amendment: impact on clay soil physical properties and potential phytotoxicity. Waste Biomass Valorization. 2019; 10: 3471-3484. doi:10.1007/s12649-018-0364-0
- 119Zhang L, Wang Q, Wang B, Yang G, Lucia LA, Chen J. Hydrothermal carbonization of corncob residues for hydrochar production. Energy Fuels. 2015; 29: 872-876. doi:10.1021/ef502462p
- 120Belete YZ, Ziemann E, Gross A, Bernstein R. Facile activation of sludge-based hydrochar by Fenton oxidation for ammonium adsorption in aqueous media. Chemosphere. 2021; 273:128526. doi:10.1016/j.chemosphere.2020.128526
- 121Reza MT, Mumme J, Ebert A. Characterization of hydrochar obtained from hydrothermal carbonization of wheat straw digestate. Biomass Convers Biorefin. 2015; 5: 425-435. doi:10.1007/s13399-015-0163-9
- 122Adar E, Bilgili MS. The performance of four different mineral liners on the transportation of chlorinated phenolic compounds to groundwater in landfills. Sci World J. 2015; 2015: 15-18. doi:10.1155/2015/171284
10.1155/2015/171284 Google Scholar
- 123Belete YZ, Leu S, Boussiba S, et al. Characterization and utilization of hydrothermal carbonization aqueous phase as nutrient source for microalgal growth. Bioresour Technol. 2019; 290:121758. doi:10.1016/j.biortech.2019.121758
- 124Tarhan SZ, Koçer AT, Özçimen D, Gökalp İ. Cultivation of green microalgae by recovering aqueous nutrients in hydrothermal carbonization process water of biomass wastes. J Water Process Eng. 2020; 40:101783. doi:10.1016/j.jwpe.2020.101783
- 125Mohan D, Sarswat A, Ok YS, Pittman CU. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent: a critical review. Bioresour Technol. 2014; 160: 191-202. doi:10.1016/j.biortech.2014.01.120
- 126Malghani S, Gleixner G, Trumbore SE. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol Biochem. 2013; 62: 137-146. doi:10.1016/j.soilbio.2013.03.013
- 127Baronti S, Alberti G, Camin F, et al. Hydrochar enhances growth of poplar for bioenergy while marginally contributing to direct soil carbon sequestration. GCB Bioenergy. 2017; 9: 1618-1626. doi:10.1111/gcbb.12450
- 128Saber M, Takahashi F, Yoshikawa K. Characterization and application of microalgae hydrochar as a low-cost adsorbent for Cu (II) ion removal from aqueous solutions. Environ Sci Pollut Res. 2018; 25: 32721-32734. doi:10.1007/s11356-018-3106-8
- 129Koottatep T, Fakkaew K, Tajai N, Polprasert C. Isotherm models and kinetics of copper adsorption by using hydrochar produced from hydrothermal carbonization of faecal sludge. J Water Sanit Hyg Dev. 2017; 7: 102-110.
10.2166/washdev.2017.132 Google Scholar
- 130Safari F, Javani N, Yumurtaci Z. Hydrogen production via supercritical water gasification of almond shell over algal and agricultural hydrochars as catalysts. Int J Hydrogen Energy. 2018; 43: 1071-1080. doi:10.1016/j.ijhydene.2017.05.102
- 131Castello D, Kruse A, Fiori L. Supercritical water gasification of hydrochar. Chem Eng Res Des. 2014; 92: 1864-1875. doi:10.1016/j.cherd.2014.05.024
- 132Biller P, Ross AB, Skill SC, et al. Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Research. 2012;1(1):70-76.
- 133Kambo HS, Minaret J, Dutta A. Process water from the hydrothermal carbonization of biomass: a waste or a valuable product? Waste Biomass Valorization. 2018; 9: 1181-1189. doi:10.1007/s12649-017-9914-0
- 134Villamil JA, Mohedano AF, Rodriguez JJ, De la Rubia MA. Anaerobic co-digestion of the aqueous phase from hydrothermally treated waste activated sludge with primary sewage sludge. A kinetic study. J Environ Manage. 2019; 231: 726-733. doi:10.1016/j.jenvman.2018.10.031
- 135Lucian M, Volpe M, Merzari F, et al. Hydrothermal carbonization coupled with anaerobic digestion for the valorization of the organic fraction of municipal solid waste. Bioresour Technol. 2020; 314:123734. doi:10.1016/j.biortech.2020.123734
- 136De la Rubia MA, Villamil JA, Rodriguez JJ, Mohedano AF. Effect of inoculum source and initial concentration on the anaerobic digestion of the liquid fraction from hydrothermal carbonisation of sewage sludge. Renew Energy. 2018; 127: 697-704. doi:10.1016/j.renene.2018.05.002
- 137Yan M, Liu Y, Song Y, et al. Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification. Energy. 2022; 242:123054. doi:10.1016/j.energy.2021.123054