Creating membrane-air-liquid interface through a rough hierarchy structure for membrane gas absorption to remove CO2
Pei Thing Chang
School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
Search for more papers by this authorIsmat Muhsin Baharuddin
School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
Search for more papers by this authorQi Hwa Ng
Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Padang Besar, Perlis, Malaysia
Frontier Materials Research, Centre of Excellence (FrontMate), Universiti Malaysia Perlis (UniMAP), Padang Besar, Perlis, Malaysia
Search for more papers by this authorGuang Hui Teoh
School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
Search for more papers by this authorAbdul Latif Ahmad
School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
Search for more papers by this authorCorresponding Author
Siew Chun Low
School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
Correspondence
Siew Chun Low, School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, Nibong Tebal 14300, Pulau Pinang, Malaysia.
Email: [email protected]; [email protected]
Search for more papers by this authorPei Thing Chang
School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
Search for more papers by this authorIsmat Muhsin Baharuddin
School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
Search for more papers by this authorQi Hwa Ng
Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Padang Besar, Perlis, Malaysia
Frontier Materials Research, Centre of Excellence (FrontMate), Universiti Malaysia Perlis (UniMAP), Padang Besar, Perlis, Malaysia
Search for more papers by this authorGuang Hui Teoh
School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
Search for more papers by this authorAbdul Latif Ahmad
School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
Search for more papers by this authorCorresponding Author
Siew Chun Low
School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
Correspondence
Siew Chun Low, School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, Nibong Tebal 14300, Pulau Pinang, Malaysia.
Email: [email protected]; [email protected]
Search for more papers by this authorFunding information: Fundamental Research Grant Scheme, Grant/Award Number: FRGS/1/2017/TK02/USM/02/3 (203.PJKIMIA.6071367)
Summary
Membrane gas absorption (MGA) is widely accepted for separating CO2 from flue gas due to its superior advantages in overcoming the operational and economic issues encountered by conventional CO2 removal technologies. However, the efficiency may reduce when the membrane starts to wet after the prolonged operation due to the invasion of liquid absorbent into the membrane pores. Therefore, the synthesis of the superhydrophobic membrane is of great significance to enhance the wetting resistance of the membrane. It can also ensure continuous process optimization. In this work, two PVDF membranes synthesized from polymers of different molecular weights (HMW/g-PVDF and LMW/g-PVDF) had first used to evaluate the wetting resistance. As shown by the characterization tests, the HMW/g-PVDF membrane demonstrated the most critical wetting issue because the WCA was lower at 92°, and the WCA had significantly reduced to 47° after the swelling evaluation. Since HMW/g-PVDF has the lowest wetting resistance, it had been used to synthesis superhydrophobic membranes by using templated substrate (non-woven fabric). The produced membranes were immersed in water or an ethanol coagulation bath and successfully printed hierarchical structures on the membrane surface. The change in the surface structure produced a higher surface roughness, reaching 4.4 μm, and exhibited a low contact angle hysteresis of 11.8°. The patterned membrane with excellent wetting resistance also showed a higher CO2 absorption flux at 7.00 × 10−2 mol/m2s. This means that the hierarchical structure existing on the membrane surface played a significant role in overcoming the shortcomings of membrane wetting in MGA.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request due to privacy/ethical restrictions.
REFERENCES
- 1Adi Putra Z, Kurnia JC, Sasmito AP, Muraza O. Process design and techno-economic analysis of ethyl levulinate production from carbon dioxide and 1,4-butanediol as an alternative biofuel and fuel additive. Int J Energy Res. 2019; 43(11): 5932-5945. doi:10.1002/er.4702
- 2Chen Z, Shen Q, Gong H, Du M. Preparation of a novel dual-layer polyvinylidene fluoride hollow fiber composite membrane with hydrophobic inner layer for carbon dioxide absorption in a membrane contactor. Sep Purif Technol. 2020; 248:117045. doi:10.1016/j.seppur.2020.117045
- 3Xu Y, Malde C, Wang R. Correlating physicochemical properties of commercial membranes with CO2 absorption performance in gas-liquid membrane contactor. J Membr Sci Res. 2020; 6(1): 30-39. doi:10.22079/JMSR.2019.107096.1262
10.22079/JMSR.2019.107096.1262 Google Scholar
- 4Rosli A, Ahmad AL, Low SC. Enhancing membrane hydrophobicity using silica end-capped with organosilicon for CO2 absorption in membrane contactor. Sep Purif Technol. 2020; 251:117429. doi:10.1016/j.seppur.2020.117429
- 5Erfani A, Asghari M. Comparision of micro- and nano-sized CuBTC particles on CO2/CH4 separation performance of PEBA mixed matrix membranes. J Chem Technol Biotechnol. 2020; 95(11): 2951-2963. doi:10.1002/jctb.6456
- 6Talavari A, Ghanavati B, Azimi A, Sayyahi S. Preparation and characterization of PVDF-filled MWCNT hollow fiber mixed matrix membranes for gas absorption by Al2O3 nanofluid absorbent via gas–liquid membrane contactor. Chem Eng Res Des. 2020; 156: 478-494. doi:10.1016/j.cherd.2020.01.017
- 7Rosli A, Ahmad AL, Low SC. Anti-wetting polyvinylidene fluoride membrane incorporated with hydrophobic polyethylene-functionalized-silica to improve CO2 removal in membrane gas absorption. Sep Purif Technol. 2019; 221: 275-285. doi:10.1016/j.seppur.2019.03.094
- 8Lin Y, Xu Y, Loh CH, Wang R. Development of robust fluorinated TiO2/PVDF composite hollow fiber membrane for CO2 capture in gas-liquid membrane contactor. Appl Surf Sci. 2018; 436: 670-681. doi:10.1016/j.apsusc.2017.11.263
- 9Toh MJ, Oh PC, Chew TL, Ahmad AL. Antiwettability enhancement of PVDF-HFP membrane via superhydrophobic modification by SiO2 nanoparticles. C R Chim. 2019; 22(5): 369-372. doi:10.1016/j.crci.2019.05.004
- 10Khraisheh M, AlMomani F, Al-Ghouti M. Electrospun Al2O3 hydrophobic functionalized membranes for heavy metal recovery using direct contact membrane distillation. Int J Energy Res. 2021; 45(6): 8151-8167. doi:10.1002/er.5710
- 11Tang H, Zhang Y, Wang F, Zhang H, Guo Y. Long-term stability of polytetrafluoroethylene (PTFE) hollow fiber membranes for CO2 capture. Energy Fuel. 2016; 30(1): 492-503. doi:10.1021/acs.energyfuels.5b01789
- 12Pang H, Chen Z, Gong H, Du M. Fabrication of a super hydrophobic polyvinylidene fluoride–hexadecyltrimethoxysilane hybrid membrane for carbon dioxide absorption in a membrane contactor. J Membr Sci. 2020; 595:117536. doi:10.1016/j.memsci.2019.117536
- 13Teoh GH, Chin JY, Ooi BS, Jawad ZA, Leow HTL, Low SC. Superhydrophobic membrane with hierarchically 3D-microtexture to treat saline water by deploying membrane distillation. J Water Process Eng. 2020; 37:101528. doi:10.1016/j.jwpe.2020.101528
- 14Rosli A, Ahmad AL, Low SC. Functionalization of silica nanoparticles to reduce membrane swelling in CO2 absorption process. J Chem Technol Biotechnol. 2020; 95(4): 1073-1084. doi:10.1002/jctb.6289
- 15Li Y, Wang L, Hu X, Jin P, Song X. Surface modification to produce superhydrophobic hollow fiber membrane contactor to avoid membrane wetting for biogas purification under pressurized conditions. Sep Purif Technol. 2018; 194: 222-230. doi:10.1016/j.seppur.2017.11.041
- 16Toh MJ, Oh PC, Ahmad AL, Caille J. Enhancing membrane wetting resistance through superhydrophobic modification by polydimethylsilane-grafted-SiO2 nanoparticles. Korean J Chem Eng. 2019; 36(11): 1854-1858. doi:10.1007/s11814-019-0362-3
- 17Meng S, Mansouri J, Ye Y, Chen V. Effect of templating agents on the properties and membrane distillation performance of TiO2-coated PVDF membranes. J Membr Sci. 2014; 450: 48-59. doi:10.1016/j.memsci.2013.08.036
- 18Xin Q, Li X, Hou H, et al. Superhydrophobic surface-constructed membrane contactor with hierarchical lotus-leaf-like interfaces for efficient SO2 capture. ACS Appl Mater Interfaces. 2021; 13(1): 1827-1837. doi:10.1021/acsami.0c17534
- 19Jin P, Huang C, Li Y, Li J, Wang L. Fabrication of a superhydrophobic poly(vinylidene fluoride) hollow fibre membrane by spray deposition. Micro Nano Lett. 2018; 13(2): 223-227. doi:10.1049/mnl.2017.0394
- 20Chakradhar RPS, Prasad G, Bera P, Anandan C. Stable superhydrophobic coatings using PVDF–MWCNT nanocomposite. Appl Surf Sci. 2014; 301: 208-215. doi:10.1016/j.apsusc.2014.02.044
- 21Zhao F, Ma Z, Xiao K, et al. Hierarchically textured superhydrophobic polyvinylidene fluoride membrane fabricated via nanocasting for enhanced membrane distillation performance. Desalination. 2018; 443: 228-236. doi:10.1016/j.desal.2018.06.003
- 22Wei C, Dai F, Lin L, et al. Simplified and robust adhesive-free superhydrophobic SiO2-decorated PVDF membranes for efficient oil/water separation. J Membr Sci. 2018; 555: 220-228. doi:10.1016/j.memsci.2018.03.058
- 23Ko T-J, Park SJ, Kim M-S, et al. Single-step plasma-induced hierarchical structures for tunable water adhesion. Sci Rep. 2020; 10: 874. doi:10.1038/s41598-019-56787-z
- 24Qing Y, Yang C, Hu C, Zheng Y, Liu C. A facile method to prepare superhydrophobic fluorinated polysiloxane/ZnO nanocomposite coatings with corrosion resistance. Appl Surf Sci. 2015; 326: 48-54. doi:10.1016/j.apsusc.2014.11.100
- 25Tan X, Huang Z, Jiang L, et al. A simple fabrication of superhydrophobic PVDF/SiO2 coatings and their anti-icing properties. J Mater Res. 2021; 36: 637-645. doi:10.1557/s43578-020-00034-z
- 26Razmjou A, Arifin E, Dong G, Mansouri J, Chen V. Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J Membr Sci. 2012; 415-416: 850-863. doi:10.1016/j.memsci.2012.06.004
- 27Fontananova E, Bahattab MA, Aljlil SA, et al. From hydrophobic to hydrophilic polyvinylidenefluoride (PVDF) membranes by gaining new insight into material's properties. RSC Adv. 2015; 5(69): 56219-56231. doi:10.1039/C5RA08388E
- 28Dey A, Mandal B, Dash SK. Analysis of equilibrium CO2 solubility in aqueous APDA and its potential blends with AMP/MDEA for postcombustion CO2 capture. Int J Energy Res. 2020; 44(15): 12395-12415. doi:10.1002/er.5404
- 29Drelich J, Chibowski E, Meng DD, Terpilowski K. Hydrophilic and superhydrophilic surfaces and materials. Soft Matter. 2011; 7(21): 9804-9828. doi:10.1039/C1SM05849E
- 30Zhang Y, Ye L, Zhang B, et al. Characteristics and performance of PVDF membrane prepared by using NaCl coagulation bath: Relationship between membrane polymorphous structure and organic fouling. J Membr Sci. 2019; 579: 22-32. doi:10.1016/j.memsci.2019.02.054
- 31Teoh GH, Ooi BS, Jawad ZA, Low SC. Impacts of PVDF polymorphism and surface printing micro-roughness on superhydrophobic membrane to desalinate high saline water. J Environ Chem Eng. 2021; 9(4):105418. doi:10.1016/j.jece.2021.105418
- 32Mansourizadeh A, Ismail AF. Influence of membrane morphology on characteristics of porous hydrophobic PVDF hollow fiber contactors for CO2 stripping from water. Desalination. 2012; 287: 220-227. doi:10.1016/j.desal.2011.08.063
- 33Zhang Y, Ye L, Zhao W, et al. Antifouling mechanism of the additive-free β-PVDF membrane in water purification process: Relating the surface electron donor monopolarity to membrane-foulant interactions. J Membr Sci. 2020; 601:117873. doi:10.1016/j.memsci.2020.117873
- 34Rosli A, Paul SAS, Low SC. Computational analysis of atomic binding energy for organosilicon-low-density polyethylene-coated silica embedded in polyvinylidene fluoride composite membrane for membrane gas absorption. Int J Energy Res. 2021; 45(10): 15372-15388. doi:10.1002/er.6810
- 35Barbe AM, Hogan PA, Johnson RA. Surface morphology changes during initial usage of hydrophobic, microporous polypropylene membranes. J Membr Sci. 2000; 172(1): 149-156. doi:10.1016/S0376-7388(00)00338-0
- 36Rezaiyan Z, Keshavarz P, Khorram M. Experimental investigation of the effects of different chemical absorbents on wetting and morphology of poly(vinylidene fluoride) membrane. J Appl Polym Sci. 2017; 134(47):45543. doi:10.1002/app.45543
- 37Idris Z, Han J, Jayarathna S, Eimer DA. Surface tension of alkanolamine solutions: an experimentally based review. Energy Procedia. 2017; 114: 1828-1833. doi:10.1016/j.egypro.2017.03.1310
- 38Vázquez G, Alvarez E, Rendo R, Romero E, Navaza JM. Surface tension of aqueous solutions of diethanolamine and triethanolamine from 25 °C to 50 °C. J Chem Eng Data. 1996; 41(4): 806-808. doi:10.1021/je960012t
- 39Álvarez E, Cancela Á, Maceiras R, Navaza JM, Táboas R. Surface tension of aqueous binary mixtures of 1-amino-2-propanol and 3-amino-1-propanol, and aqueous ternary mixtures of these amines with diethanolamine, triethanolamine, and 2-amino-2-methyl-1-propanol from (298.15 to 323.15) K. J Chem Eng Data. 2003; 48(1): 32-35. doi:10.1021/je020048n
- 40Mosadegh-Sedghi S, Brisson J, Rodrigue D, Iliuta MC. Morphological, chemical and thermal stability of microporous LDPE hollow fiber membranes in contact with single and mixed amine based CO2 absorbents. Sep Purif Technol. 2012; 96: 117-123. doi:10.1016/j.seppur.2012.05.025
- 41Wu AHF, Cho KL, Liaw II, Moran G, Kirby N, Lamb RN. Hierarchical surfaces: an in situ investigation into nano and micro scale wettability. Faraday Discuss. 2010; 146: 223-232. doi:10.1039/B927136H
- 42Zhang H, Yin L, Liu X, Weng R, Wang Y, Wu Z. Wetting behavior and drag reduction of superhydrophobic layered double hydroxides films on aluminum. Appl Surf Sci. 2016; 380: 178-184. doi:10.1016/j.apsusc.2016.01.208
- 43Tang Y, Sun J, Li S, Ran Z, Xiang Y. Effect of ethanol in the coagulation bath on the structure and performance of PVDF-g-PEGMA/PVDF membrane. J Appl Polym Sci. 2019; 136(17): 47380. doi:10.1002/app.47380
- 44Ahmad AL, Ramli WKW, Fernando WJN, Daud WRW. Effect of ethanol concentration in water coagulation bath on pore geometry of PVDF membrane for membrane gas absorption application in CO2 removal. Sep Purif Technol. 2012; 88: 11-18. doi:10.1016/j.seppur.2011.11.035
- 45Tas M, Xu F, Ahmed I, Hou X. One-step fabrication of superhydrophobic P(VDF-co-HFP) nanofibre membranes using electrospinning technique. J Appl Polym Sci. 2020; 137(24): 48817. doi:10.1002/app.48817
- 46Szczepanski CR, Guittard F, Darmanin T. Recent advances in the study and design of parahydrophobic surfaces: From natural examples to synthetic approaches. Adv Colloid Interface Sci. 2017; 241: 37-61. doi:10.1016/j.cis.2017.01.002
- 47Kruszczak E, Kierzkowska-Pawlak H. CO2 capture by absorption in activated aqueous solutions of N,N-diethylethanoloamine. Ecol Chem Eng S. 2017; 24(2): 239-248. doi:10.1515/eces-2017-0016
- 48Toh MJ, Oh PC, Chew TL, Ahmad AL. Preparation of polydimethylsiloxane-SiO2/PVDF-HFP mixed matrix membrane of enhanced wetting resistance for membrane gas absorption. Sep Purif Technol. 2020; 244:116543. doi:10.1016/j.seppur.2020.116543
- 49Amirabedi P, Akbari A, Yegani R. Fabrication of hydrophobic PP/CH3SiO2 composite hollow fiber membrane for membrane contactor application. Sep Purif Technol. 2019; 228:115689. doi:10.1016/j.seppur.2019.115689
- 50Lee HJ, Park JH. Effect of hydrophobic modification on carbon dioxide absorption using porous alumina (Al2O3) hollow fiber membrane contactor. J Membr Sci. 2016; 518: 79-87. doi:10.1016/j.memsci.2016.06.038
- 51Xu Y, Lin Y, Lee M, Malde C, Wang R. Development of low mass-transfer-resistance fluorinated TiO2-SiO2/PVDF composite hollow fiber membrane used for biogas upgrading in gas-liquid membrane contactor. J Membr Sci. 2018; 552: 253-264. doi:10.1016/j.memsci.2018.02.016