Application of new hybrid models based on artificial neural networks for modeling pyrolysis yields of Atriplex nitens S.
Corresponding Author
Alperay Altikat
Department of the Biosystems Engineering, Iğdır University Agriculture Faculty, Iğdır, Turkey
Correspondence
Alperay Altikat, Iğdır University Agriculture Faculty Department of the Biosystems Engineering, Iğdır, Turkey.
Email: [email protected]
Search for more papers by this authorMehmet Hakki Alma
Department of the Biosystems Engineering, Iğdır University Agriculture Faculty, Iğdır, Turkey
Search for more papers by this authorCorresponding Author
Alperay Altikat
Department of the Biosystems Engineering, Iğdır University Agriculture Faculty, Iğdır, Turkey
Correspondence
Alperay Altikat, Iğdır University Agriculture Faculty Department of the Biosystems Engineering, Iğdır, Turkey.
Email: [email protected]
Search for more papers by this authorMehmet Hakki Alma
Department of the Biosystems Engineering, Iğdır University Agriculture Faculty, Iğdır, Turkey
Search for more papers by this authorSummary
Biochar, bio-oil, and synthesis gas are products obtained from the pyrolysis process, which have alternative usage areas. Biochar is used for adsorption of pollutants, soil conditioner, and as an alternative heating source. Bio-oil is used as a fuel for conventional engines after various upgrading methods, and the synthesis gas is a heat source in energy production. Biochar, bio-oil, and synthesis gas yields obtained from the Atriplex nitens S. plant at the end of the pyrolysis process were modeled using artificial neural networks (ANNs) and hybrid models in this study. Multiple linear regression, ANNs, principal component analysis + multiple linear regression, and principal component analysis + ANN models were used. In addition, 48 different network architectures in ANNs were tested. At the end of the study, the best prediction results of biochar, bio-oil, and synthesis gas were obtained from the ANN 35 (R2 = 0.977), ANN 17 (R2 = 0.985), and ANN 44 (R2 = 0.969) ANN architecture, respectively. The sensitivity analyses were performed using these best models for biochar, bio-oil, and synthesis gas. As a result of the sensitivity analysis, it was determined that the most effective factor in the production of biochar and bio-oil was the gas flow rate, and this was followed by the holding time and pyrolysis temperature. However, the most effective factor in synthesis gas yield was determined as the holding time, and this was followed by gas flow rate and pyrolysis temperature parameters.
Supporting Information
Filename | Description |
---|---|
er7441-sup-0001-Tables.docxWord 2007 document , 36.9 KB | Table S1. The statistical results of the artificial neural network (ANN) model for biochar yield Table S2. The statistical results of the artificial neural network (ANN) model for bio-oil yield Table S3. The statistical results of the artificial neural network (ANN) model for synthesis gas |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Bukhtiyarova M, Lunkenbein T, Keahler T, Schleogl R. Methanol synthesis from industrial CO2 sources: a contribution to chemical energy conversion. Catal Lett. 2017; 147(2): 416-427. doi:10.1007/s10562-016-1960-x
- 2Selvarajoo A. Biomass char gasification with carbon dioxide as an alternative energy, IOP Conf. Series: earth. Environ Sci. 2020; 489: 1-6. doi:10.1088/1755-1315/489/1/012033012033
- 3Liu Z, Han G. Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel. 2015; 158: 159-165. doi:10.1016/j.fuel.2015.05.032
- 4You S, Ok YS, Chen SS, et al. A critical review on sustainable biochar system through gasification: energy and environmental applications. Bioresour Technol. 2017; 246: 242-253. doi:10.1016/j.biortech.201
- 5Onsree T, Tippayawong N. Application of Gaussian smoothing technique in evaluation of biomass pyrolysis kinetics in macro-TGA. Energy Procedia. 2017; 138: 778-783. doi:10.1016/j.egypro.2017.10.059
- 6Chen Y, Yang H, Wang X, Zhang S, Chen H. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature. Bioresour Technol. 2012; 107: 411-418. doi:10.1016/j.biortech.2011.10.074
- 7Fayyad U, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery in databases. AI Mag. 1996; 17: 37-54. doi:10.1609/aimag.v17i3.1230
- 8Pandey DS, Pan I, Das S, Leahy JJ, Kwapinski W. Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier. Bioresour Technol. 2015; 179: 524-533. doi:10.1016/j.biortech.2014.12.048
- 9Mikulandric R, Loncar D, Böhning D, Böhme R, Beckmann M. Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers. Energy Convers Manag. 2014; 87: 1210-1223. doi:10.1016/j.enconman.2014.03.036
- 10Branca C, Blasi CD. A lumped kinetic model for banana peel combustion. Thermochim Acta. 2015; 614: 68-75. doi:10.1016/j.tca.2015.06.022
- 11White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrol. 2011; 9: 11-33. doi:10.1016/j.cub.2017.05.064
- 12Wardach-Sẃięcicka I, Kardas D. Modeling of heat and mass transfer during thermal decomposition of a single solid fuel particle. Arch Thermodyn. 2013; 34: 53-71. doi:10.2478/aoter-2013-0010
- 13Guo B, Li D, Cheng C, Lü Z, Shen Y. Simulation of biomass gasification with a hybrid neural network model. Bioresour Technol. 2001; 76: 77-83. doi:10.1016/S0960-8524(00)00106-1
- 14Puig-Arnavat M, Hernández JA, Bruno JC, Coronas A. Artificial neural network models for biomass gasification in fluidized bed gasifiers. Biomass Bioenergy. 2013; 49: 279-289. doi:10.1016/j.biombioe.2012.12.012
- 15Mikulandric R, Böhning D, Böhme R, Helsen L, Beckmann M, Loncˇar D. Dynamic modelling of biomass gasification in a co-current fixed bed gasifier. Energy Convers Manag. 2016; 125: 264-276. doi:10.1016/j.enconman.2016.04.067
- 16Arumugasamy SK, Selvarajoo A, Tariq MA. Artificial neural networks modelling: gasification behaviour of palm fibre biochar. Mater Sci Energy Technol. 2020; 3: 868-878. doi:10.1016/j.mset.2020.10.010
- 17Shahbaz M, Taqvi SA, Inayat M, et al. Air catalytic biomass (PKS) gasification in a fixed-bed downdraft gasifier using waste bottom ash as catalyst with NARX neural network modelling. Comput Chem Eng. 2020; 107048: 1-12. doi:10.1016/j.compchemeng.2020.107048
- 18Salah A, Hanel L, Beirow M, Scheffknecht G. Modelling SER biomass gasification using dynamic neural networks. Comput Aided Chem Eng. 2016; 38: 19-24. doi:10.1016/B978-0-444-63428-3.50008-4
- 19Merdun H, Sezgin IV. Modelling of pyrolysis product yields by artificial neural networks. Int J Renew Energy Res. 2018; 8(2): 1178-1188.
- 20Chavan P, Sharma T, Mall B, et al. Development of data-driven models for fluidized-bed coal gasification process. Fuel. 2012; 93: 44-51. doi:10.1016/j.fuel.2011.11.039
- 21Salter GJ, Lazzari M, Giansante L, et al. Determination of the geographical origin of Italian extra virgin olive oil using pyrolysis mass spectrometry and artificial neural networks. J Anal Appl Pyrolysis. 1997; 40: 159-170. doi:10.1016/s0165-2370(96)00975-8
- 22Voisin S, Terreux R, Renaud FNR, Freney J. Pyrolysis patterns of 5 close Corynebacterium species analyzed by artificial neural networks. A Van Leeuw J Microb. 2004; 85(4): 287-296. doi:10.1023/b:anto.0000020165.21866.67
- 23Bong JT, Loy ACM, Chin BLF, et al. Artificial neural network approach for co-pyrolysis of Chlorella vulgaris and peanut shell binary mixtures using microalgae ash catalyst. Energy. 2020; 207:118289.
- 24Demirbaş A. Carbonization ranking of selected biomass for charcoal, liquid and gaseous products. Energy Convers Manag. 2001; 42(10): 1229-1238. doi:10.1016/S0196-8904(00)00110-2
- 25Demiral I, Eryazici A, Şensöz S. Bio-oil production from pyrolysis of corncob (Zea mays L.). Biomass Bioenergy. 2012; 36: 43-49. doi:10.1016/j.biombioe.2011.10.045
- 26Pütün AE, Özcan A, Gerçel HF, Pütün E. Production of biocrudes from biomass in a fixed-bed tubular reactor: product yields and compositions. Fuel. 2013; 80(10): 1371-1378. doi:10.1016/S0016-2361(01)00021-7
- 27Angın D, Tiryaki AE. Application of response surface methodology and artificial neural network on pyrolysis of safflower seed press cake. Energy Sources Part A: Recov Util Environ Effects. 2016; 38: 8. doi:10.1080/15567036.2013.862585
- 28Angın D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysisof safflower seed press cake. Bioresour Technol. 2013; 8: 593-597. doi:10.1016/j.biortech.2012.10.150
- 29Gardner MW, Dorling SR. Artificial neural networks (the multilayerperceptron): a review of applications in the atmosphericscience. Atmos Environ. 1998; 32: 2627-2636. doi:10.1016/S1352-2310(97)00447-0
- 30Yang X, Kang K, Qiu L, Zhao L, Sun R. Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches. Renew Energy. 2020; 146: 1691-1699. doi:10.1016/j.renene.2019.07.148
- 31Wei S, Zhu M, Fan X, et al. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge. Chemosphere. 2019; 218: 624-631. doi:10.1016/j.chemosphere.2018.11.177
- 32Ferreira AF, Ribau JP, Costa M. A decision support method for biochars characterization from carbonization of grape pomace. Biomass Bioenergy. 2021; 145:105946. doi:10.1016/j.biombioe.2020.105946
- 33Keiluweit M, Nico PS, Johnson MG, Kleber M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol. 2010; 44: 1247-1253. doi:10.1021/es9031419
- 34Xiao X, Chen BL, Zhu LZ. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environ Sci Technol. 2014; 48: 3411-3419. doi:10.1021/es405676h
- 35Yuan HR, Lu T, Huang HY, Zhao DD, Kobayashi N, Chen Y. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. J Anal Appl Pyrol. 2015; 112: 284-289. doi:10.1016/j.jaap.2015.01.010
- 36Wei S, Zhu M, Song J, Peng PA. Comprehensive characterization of biochars produced from three major crop straws of China. Bioresources. 2017; 12: 3316-3330. doi:10.7717/peerj.6784
- 37Muradov N, Fidalgo B, Gujar AC, Garceau N, T-Raissi A. Production and characterization of Lemna minor bio-char and its catalytic application for biogas reforming. Biomass Bioenergy. 2012; 42: 123-131. doi:10.1016/j.biombioe.2012.03.003
- 38Xiao R, Yang W. Influence of temperature on organic structure of biomass pyrolysis products. Renew Energy. 2013; 50: 136-141. doi:10.1016/j.renene.2012.06.028
- 39Yan W, Shuting Z, Yufeng Z, Hui X, Na D, Guanyi C. Experimental studies on low-temperature pyrolysisof municipal household garbage—temperatureinfluence on pyrolysis product distribution. Renew Energy. 2005; 30: 1133-1142. doi:10.1016/j.renene.2004.09.016
- 40Wani I, Kumar H, Rangappa SM, Peng L, Siengchin S, Kushvaha V. Multiple regression model for predicting cracks in soil amended with pig manure biochar and wood biochar. J Hazard Toxic Radioact Waste. 2021; 25(1):04020007. doi:10.1061/(ASCE)HZ.2153-5515.0000561
- 41Khademalrasoul A, Naveed M, Heckrath G, et al. Biochar effects on soil aggregate properties under no-till maize. Soil Sci. 2014; 179(6): 1-11. doi:10.1097/SS.0000000000000069
- 42Pattiya A, James O, Titiloye A, Bridgwater V. Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis. Fuel. 2010; 89(1): 244-253. doi:10.1016/j.fuel.2009.07.003
- 43Aguado R, Arrizabalaga A, Arabiourrutia M, Lopez G, Bilbao J, Olazar M. Principal component analysis for kinetic scheme proposal in the thermal and catalytic pyrolysis of waste tyers. Chem Eng Sci. 2014; 106: 9-17. doi:10.1016/j.ces.2013.11.024
- 44Batista RR, Gomes MM. Effects of chemical composition and pyrolysis process variables on biochar yields: correlation and principal component analysis. Floresta Ambiente. 2021; 28(3):e20210007. doi:10.1590/2179-8087-FLORAM-2021-0007
10.1590/2179-8087-floram-2021-0007 Google Scholar
- 45Couto AM, Protásio TP, Trugilho PF, Neves TA, Sá VA. Multivariate analysis applied to evaluation of eucalyptus clones for bioenergy production. Cerne. 2013; 19(4): 525-533. doi:10.1590/S0104-77602013000400001
- 46Chen X, Zhang H, Song Y, Xiao R. Prediction of product distribution and bio-oil heating value of biomass fast pyrolysis. Chem Eng Process Process Intensif. 2018; 130: 36-42. doi:10.1016/j.cep.2018.05.018
- 47Cao H, Xin Y, Yuan Q. Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach. Bioresour Technol. 2016; 202: 158-164. doi:10.1016/j.biortech.2015.12.024
- 48Safarian S, Saryazdi MES, Unnthorsson R, Richter C. Artificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant. Energy. 2020; 213:118800. doi:10.1016/j.energy.2020.118800
- 49Serrano D, Golpour I, Delgado SS. Predicting the effect of bed materials in bubbling fluidized bed gasification using artificial neural networks (ANNs) modeling approach. Fuel. 2020; 46:117021. doi:10.1016/j.fuel.2020.117021
- 50Aghbashlo M, Almasi F, Jafari A, et al. Describing biomass pyrolysis kinetics using a generic hybrid intelligent model: a critical stage in sustainable waste-oriented biorefineries. Renew Energy. 2021; 170: 81-91. doi:10.1016/j.renene.2021.01.111
- 51 Jalalifar S, Masoudi M, Abbassi R, Garaniya V, Ghiji M, Salehi G. A hybrid SVR-PSO model to predict a CFD-based optimised bubbling fluidised bed pyrolysis reactor. Energy, 2020; 116414: 1-26. doi:10.1016/j.energy.2019.116414
- 52Bhuyan N, Narzari R, Baruah SMB, Kataki R. Comparative assessment of artificial neural network and response surface methodology for evaluation of the predictive capability on bio-oil yield of Tithonia diversifolia pyrolysis. Biomass Convers Biorefin. 2020: 1-16. doi:10.1007/s13399-020-00806-x