Understanding the role of lithium bonds in doped graphene nanoribbons as cathode hosts for Li-S batteries: A first-principles study
Corresponding Author
Sinthika S
Department of Physics and Research Centre, Lady Doak College, Madurai, Tamil Nadu, India
Correspondence
Sinthika S, Department of Physics and Research Centre, Lady Doak College, Madurai 625002, Tamil Nadu, India.
Email: [email protected]
Ranjit Thapa, Department of Physics, SRM University—AP, Amaravati 522-240, Andhra Pradesh, India.
Email: [email protected]
Search for more papers by this authorPushpa Selvi M
Department of Physics and Research Centre, Lady Doak College, Madurai, Tamil Nadu, India
Search for more papers by this authorNimma Elizabeth R
Department of Physics and Research Centre, Lady Doak College, Madurai, Tamil Nadu, India
Search for more papers by this authorDeepak S. Gavali
Department of Physics, SRM University—AP, Amaravati, Andhra Pradesh, India
Search for more papers by this authorCorresponding Author
Ranjit Thapa
Department of Physics, SRM University—AP, Amaravati, Andhra Pradesh, India
Correspondence
Sinthika S, Department of Physics and Research Centre, Lady Doak College, Madurai 625002, Tamil Nadu, India.
Email: [email protected]
Ranjit Thapa, Department of Physics, SRM University—AP, Amaravati 522-240, Andhra Pradesh, India.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Sinthika S
Department of Physics and Research Centre, Lady Doak College, Madurai, Tamil Nadu, India
Correspondence
Sinthika S, Department of Physics and Research Centre, Lady Doak College, Madurai 625002, Tamil Nadu, India.
Email: [email protected]
Ranjit Thapa, Department of Physics, SRM University—AP, Amaravati 522-240, Andhra Pradesh, India.
Email: [email protected]
Search for more papers by this authorPushpa Selvi M
Department of Physics and Research Centre, Lady Doak College, Madurai, Tamil Nadu, India
Search for more papers by this authorNimma Elizabeth R
Department of Physics and Research Centre, Lady Doak College, Madurai, Tamil Nadu, India
Search for more papers by this authorDeepak S. Gavali
Department of Physics, SRM University—AP, Amaravati, Andhra Pradesh, India
Search for more papers by this authorCorresponding Author
Ranjit Thapa
Department of Physics, SRM University—AP, Amaravati, Andhra Pradesh, India
Correspondence
Sinthika S, Department of Physics and Research Centre, Lady Doak College, Madurai 625002, Tamil Nadu, India.
Email: [email protected]
Ranjit Thapa, Department of Physics, SRM University—AP, Amaravati 522-240, Andhra Pradesh, India.
Email: [email protected]
Search for more papers by this authorSinthika S. and Pushpa Selvi M. contributed equally to this work.
Funding information: Ministry of New and Renewable Energy, Government of India, Grant/Award Number: 31/03/2014-15/PVSE-R&D
Summary
Using first-principles calculations, we investigate a family of doped graphene nanoribbons (GNRs) for their suitability as cathode hosts in lithium-sulfur batteries. We probe the role played by the lone pairs of the dopants in confining the lithium polysulfides (LiPS) to understand the mechanism of binding. Our results show that the Li bond between the polysulfides and the doped GNRs is analogous to a hydrogen bond and also dipole-dipole interactions play a key role in anchoring the polysulfides. A critical donor-Li-acceptor angle of 180° is found to be essential for proper adsorption of LiPS, highlighting the importance of the directionality of lone pairs. The charge lost by the sulfur atom of the polysulfide upon adsorption and shape of the lone pair basins and the value of Electron Localization Function (ELF) at the dopant position can provide a quick estimate of the strength of the bond. Significant contractions in the ELF profiles are also observed upon Li2S adsorption, further providing evidence for the hydrogen bond-like nature of the Li bond. Our results corroborate the fact that all acceptors capable of forming hydrogen bonds can be employed as suitable dopants for carbon-based cathode hosts in Li-S batteries.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
er7438-sup-0001-supinfo.docxWord 2007 document , 2.7 MB | FIGURE S1 Optimized structures of Li2S adsorbed on (A) NO-GNR (B) O-GNR (C) kO-GNR (D) S-GNR (E) OH-GNR (F) SO2-GNR (G) F-GNR (H) Cl-GNR and (I) Br-GNR FIGURE S2. 2D ELF plot of Li2S FIGURE S3. 2D ELF plots of (A) N-GNR (B) O-GNR (C) S-GNR (D) BO-GNR (E) NO-GNR (F) kO-GNR (G) F-GNR (H) Cl-GNR and (I) Br-GNR after adsorption FIGURE S4. 3D ELF plots of (A) N-GNR (B) O-GNR (C) S-GNR (D) BO-GNR (E) NO-GNR (F) kO-GNR (G) F-GNR (H) Cl-GNR and (I) Br-GNR after adsorption FIGURE S5. Plot showing the correlation between adsorption energy (Ead) and the value of ELF at the position of the dopant (ELFd) in doped GNR systems FIGURE S6. Optimized structures of Li2S2 adsorbed on (A) N-GNR (B) O-GNR (C) kO-GNR (D) BO-GNR and (E) NO-GNR FIGURE S7. Optimized structures of Li2S4 adsorbed on (A) N-GNR (B) O-GNR (C) kO-GNR (D) BO-GNR and (E) NO-GNR TABLE S1: Valence Bader charges on the dopants before and after adsorption and the charge lost by S atoms of Li2S2 after adsorption. TABLE S2: Bader charges on the dopants before and after adsorption and the charge lost by S atoms of Li2S4 after adsorption. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Lin Z, Liang C. Lithium–sulfur batteries: from liquid to solid cells. J Mater Chem A. 2015; 3: 936-958. doi:10.1039/C4TA04727C
- 2Kang W, Deng N, Ju J, et al. A review of recent developments in rechargeable lithium–sulfur batteries. Nanoscale. 2016; 8: 16541-16588. doi:10.1039/C6NR04923K
- 3Manthiram A, Fu Y, Su Y-S. Challenges and prospects of lithium–sulfur batteries. Acc Chem Res. 2013; 46: 1125-1134. doi:10.1021/ar300179v
- 4Pan H, Cheng Z, He P, Zhou H. A review of solid-state lithium–sulfur battery: ion transport and polysulfide chemistry. Energy Fuel. 2020; 34: 11942-11961. doi:10.1021/acs.energyfuels.0c02647
- 5Fan C, Yang R, Liu Y, et al. Alleviating the polysulfides “shuttling” and improving the sulfur utilization ably by the micropores of MOF materials. Int J Energy Res. 2021; 45: 10304-10316. doi:10.1002/er.6516
- 6Mikhaylik YV, Akridge JR. Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc. 2004; 151: A1969. doi:10.1149/1.1806394
- 7Hwa Y, Zhao J, Cairns EJ. Lithium sulfide (Li2S)/graphene oxide nanospheres with conformal carbon coating as a high-rate, long-life cathode for Li/S cells. Nano Lett. 2015; 15: 3479-3486. doi:10.1021/acs.nanolett.5b00820
- 8Bai Y, Li T, Wang Y, Jin H, Wang K, Xu H. Novel construction of nanostructured carbon materials as sulfur hosts for advanced lithium-sulfur batteries. Int J Energy Res. 2020; 44: 70-91. doi:10.1002/er.4911
- 9Zhou G, Paek E, Hwang GS, Manthiram A. Long-life Li/polysulphide batteries with high Sulphur loading enabled by lightweight three-dimensional nitrogen/Sulphur-codoped graphene sponge. Nat Commun. 2015; 6: 7760. doi:10.1038/ncomms8760
- 10Wang X, Sun G, Routh P, Kim D-H, Huang W, Chen P. Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev. 2014; 43: 7067-7098. doi:10.1039/C4CS00141A
- 11Cao Y, Li X, Aksay IA, et al. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys Chem Chem Phys. 2011; 13: 7660-7665. doi:10.1039/c0cp02477e
- 12Wang H, Yang Y, Liang Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011; 11: 2644-2647. doi:10.1021/nl200658a
- 13Li N, Zheng M, Lu H, et al. High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chem Commun. 2012; 48: 4106. doi:10.1039/c2cc17912a
- 14Ahn W, Kim K-B, Jung K-N, Shin K-H, Jin C-S. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. J Power Sources. 2012; 202: 394-399. doi:10.1016/j.jpowsour.2011.11.074
- 15Yang X, Yu Y, Yan N, Zhang H, Li X, Zhang H. 1-D oriented cross-linking hierarchical porous carbon fibers as a sulfur immobilizer for high performance lithium–sulfur batteries. J Mater Chem A. 2016; 4: 5965-5972. doi:10.1039/C6TA01060A
- 16Pei F, An T, Zang J, et al. From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries. Adv Energy Mater. 2016; 6:1502539. doi:10.1002/aenm.201502539
- 17Kang H-J, Bari GAKMR, Lee T-G, et al. Microporous carbon nanoparticles for lithium–sulfur batteries. Nanomaterials. 2020; 10: 2012. doi:10.3390/nano10102012
- 18Shi P, Wang Y, Liang X, et al. Simultaneously exfoliated boron-doped graphene sheets to encapsulate sulfur for applications in lithium–sulfur batteries. ACS Sustain Chem Eng. 2018; 6: 9661-9670. doi:10.1021/acssuschemeng.8b00378
- 19Yi GS, Sim ES, Chung Y-C. Effect of lithium-trapping on nitrogen-doped graphene as an anchoring material for lithium–sulfur batteries: a density functional theory study. Phys Chem Chem Phys. 2017; 19: 28189-28194. doi:10.1039/C7CP04507G
- 20Hou T-Z, Chen X, Peng H-J, et al. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small. 2016; 12: 3283-3291. doi:10.1002/smll.201600809
- 21Sun J, Hwang J, Jankowski P, et al. Critical role of functional groups containing N, S, and O on graphene surface for stable and fast charging Li-S batteries. Small. 2021; 17:2007242. doi:10.1002/smll.202007242
- 22Yi Z, Su F, Cui G, Han P, Dong N, Chen C. Computational insights into the interaction between Li2S/Li2S2 and heteroatom-doped graphene materials. Chem Select. 2019; 4: 12612-12621. doi:10.1002/slct.201903523
- 23Hou T-Z, Peng H-J, Huang J-Q, Zhang Q, Li B. The formation of strong-couple interactions between nitrogen-doped graphene and sulfur/lithium (poly)sulfides in lithium-sulfur batteries. 2D Mater. 2015; 2: 14011. doi:10.1088/2053-1583/2/1/014011
- 24Chen X, Bai Y, Zhao C, Shen X, Zhang Q. Lithium bonds in lithium batteries. Angew Chem. 2020; 132: 11288-11291. doi:10.1002/ange.201915623
10.1002/ange.201915623 Google Scholar
- 25Rajkamal A, Sinthika S, Andersson G, Thapa R. Ring type and π electron occupancy decides the Li-ion storage properties of phagraphene: an example of sp2 hybridized carbon structure. Carbon N Y. 2018; 129: 775-784. doi:10.1016/j.carbon.2017.12.074
- 26Chesnut DB. An electron localization function study of the lone pair. J Phys Chem A. 2000; 104: 11644-11650. doi:10.1021/jp002957u
- 27Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996; 6: 15-50. doi:10.1016/0927-0256(96)00008-0
- 28Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996; 54: 11169-11186. doi:10.1103/PhysRevB.54.11169
- 29Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 1994; 50: 17953-17979. doi:10.1103/PhysRevB.50.17953
- 30Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77: 3865-3868. doi:10.1103/PhysRevLett.77.3865
- 31Afshari F, Ghaffarian M. Electronic properties of zigzag and armchair graphene nanoribbons in the external electric and magnetic fields. Phys E Low Dimens Syst Nanostruct. 2017; 89: 86-92. doi:10.1016/j.physe.2017.02.007
- 32Kapse S, Janwari S, Waghmare UV, Thapa R. Energy parameter and electronic descriptor for carbon based catalyst predicted using QM/ML. Appl Catal Environ. 2021; 286: 119866. doi:10.1016/j.apcatb.2020.119866
- 33Saffarzadeh A. Modeling of gas adsorption on graphene nanoribbons. J Appl Phys. 2010; 107: 114309. doi:10.1063/1.3409870
- 34Sharma R, Baik JH, Perera CJ, Strano MS. Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett. 2010; 10: 398-405. doi:10.1021/nl902741x
- 35Fan L, Zhuang HL, Zhang K, Cooper VR, Li Q, Lu Y. Chloride-reinforced carbon nanofiber host as effective polysulfide traps in lithium–sulfur batteries. Adv Sci. 2016; 3:1600175. doi:10.1002/advs.201600175
- 36Yuan H, Chen X, Zhou G, et al. Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium–sulfur batteries. ACS Energy Lett. 2017; 2: 1711-1719. doi:10.1021/acsenergylett.7b00465
- 37Li X, Zeng Y, Zhang X, Zheng S, Meng L. Insight into the lithium/hydrogen bonding in (CH2)2X…LiY/HY (X: C=CH2, O, S; Y=F, Cl, Br) complexes. J Mol Model. 2011; 17: 757-767. doi:10.1007/s00894-010-0768-7
- 38Arunan E, Desiraju GR, Klein RA, et al. Definition of the hydrogen bond (IUPAC recommendations 2011). Pure Appl. Chem. 2011; 83: 1637-1641. doi:10.1351/PAC-REC-10-01-02
- 39Bijina PV, Suresh CH, Gadre SR. Electrostatics for probing lone pairs and their interactions. J Comput Chem. 2018; 39: 488-499. doi:10.1002/jcc.25082
- 40Böhm H-J, Brode S, Hesse U, Klebe G. Oxygen and nitrogen in competitive situations: which is the hydrogen-bond acceptor? Chem A Eur J. 1996; 2: 1509-1513. doi:10.1002/chem.19960021206
- 41Brammer L, Bruton EA, Sherwood P. Understanding the behavior of halogens as hydrogen bond acceptors. Cryst Growth des. 2001; 1: 277-290. doi:10.1021/cg015522k
- 42Muhammad I, Younis U, Xie H, Kawazoe Y, Sun Q. Graphdiyne-based monolayers as promising anchoring materials for lithium–sulfur batteries: a theoretical study. Adv Theory Simul. 2020; 3:1900236. doi:10.1002/adts.201900236
- 43Gavali DS, Thapa R. Synergetic effect of localized and delocalized π electron on Li storage properties of Si/C heterostructures. Carbon N Y. 2021; 171: 257-264. doi:10.1016/j.carbon.2020.08.076
- 44Sgroi MF, Pullini D, Pruna AI. Lithium polysulfide interaction with group III atoms-doped graphene: a computational insight. Batteries. 2020; 6: 46. doi:10.3390/batteries6030046
- 45Chen X, Chen X-R, Hou T-Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci Adv. 2019; 5: eaau7728. doi:10.1126/sciadv.aau7728
- 46Fuster F, Silvi B. Does the topological approach characterize the hydrogen bond? Theor Chem Accounts Theory Comput Model (Theor Chim Acta). 2000; 104: 13-21. doi:10.1007/s002149900100
- 47Alikhani ME, Fuster F, Silvi B. What can tell the topological analysis of ELF on hydrogen bonding? Struct Chem. 2005; 16: 203-210. doi:10.1007/s11224-005-4451-z
- 48Isaacs ED, Shukla A, Platzman PM, Hamann DR, Barbiellini B, Tulk CA. Covalency of the hydrogen bond in ice: a direct X-ray measurement. Phys Rev Lett. 1999; 82: 600-603. doi:10.1103/PhysRevLett.82.600
- 49Dingley AJ, Grzesiek S. Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2 J NN couplings. J Am Chem Soc. 1998; 120: 8293-8297. doi:10.1021/ja981513x
- 50 G Frenking, S Shaik, eds. The Chemical Bond. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2014. doi:10.1002/9783527664696
10.1002/9783527664696 Google Scholar
- 51Torres FJ, Rincón L, Zambrano C, Mora JR, Méndez M. A review on the information content of the pair density as a tool for the description of the electronic properties in molecular systems. Int J Quantum Chem. 2019; 119: e25763. doi:10.1002/qua.25763
- 52Koumpouras K, Larsson JA. Distinguishing between chemical bonding and physical binding using electron localization function (ELF). J Phys Condens Matter. 2020; 32: 315502. doi:10.1088/1361-648X/ab7fd8
- 53Ren YX, Jiang HR, Xiong C, Zhao C, Zhao TS. An in situ encapsulation approach for polysulfide retention in lithium–sulfur batteries. J Mater Chem A. 2020; 8: 6902-6907. doi:10.1039/C9TA14003D
- 54Dunitz JD. Organic fluorine: odd man out. Chembiochem. 2004; 5: 614-621. doi:10.1002/cbic.200300801
- 55Aullón G, Bellamy D, Guy Orpen A, Brammer L, Bruton EA. Metal-bound chlorine often accepts hydrogen bonds. Chem Commun. 1998;(6): 653-654. doi:10.1039/a709014e