A novel rule-based computational strategy for a fast and reliable energy management in isolated microgrids
Corresponding Author
Dany Mauricio Lopez-Santiago
Escuela de Ingeniería Eléctrica y Electrónica (EIEE), Universidad del Valle, Cali, Colombia
Facultad de Ingeniería, Universidad Santiago de Cali, Cali, Colombia
Correspondence
Dany Mauricio Lopez-Santiago, Escuela de Ingeniería Eléctrica y Electrónica (EIEE), Facultad de Ingeniería, Universidad del Valle, Cali 760036, Colombia.
Email: [email protected]
Search for more papers by this authorEduardo Caicedo Bravo
Escuela de Ingeniería Eléctrica y Electrónica (EIEE), Universidad del Valle, Cali, Colombia
Search for more papers by this authorGuillermo Jiménez-Estévez
DIELE, Facultad de Ingeniería, Universidad de los Andes, Bogotá, Colombia
Energy Center, Facultad de Ciencias Matemática y Físicas, Universidad de Chile, Santiago, Chile
Search for more papers by this authorFelipe Valencia
Energy Center, Facultad de Ciencias Matemática y Físicas, Universidad de Chile, Santiago, Chile
Search for more papers by this authorPatricio Mendoza-Araya
Energy Center, Facultad de Ciencias Matemática y Físicas, Universidad de Chile, Santiago, Chile
DIE, Facultad de Ciencias Matemática y Físicas, Universidad de Chile, Santiago, Chile
Search for more papers by this authorLuis Gabriel Marín
DIELE, Facultad de Ingeniería, Universidad de los Andes, Bogotá, Colombia
Search for more papers by this authorCorresponding Author
Dany Mauricio Lopez-Santiago
Escuela de Ingeniería Eléctrica y Electrónica (EIEE), Universidad del Valle, Cali, Colombia
Facultad de Ingeniería, Universidad Santiago de Cali, Cali, Colombia
Correspondence
Dany Mauricio Lopez-Santiago, Escuela de Ingeniería Eléctrica y Electrónica (EIEE), Facultad de Ingeniería, Universidad del Valle, Cali 760036, Colombia.
Email: [email protected]
Search for more papers by this authorEduardo Caicedo Bravo
Escuela de Ingeniería Eléctrica y Electrónica (EIEE), Universidad del Valle, Cali, Colombia
Search for more papers by this authorGuillermo Jiménez-Estévez
DIELE, Facultad de Ingeniería, Universidad de los Andes, Bogotá, Colombia
Energy Center, Facultad de Ciencias Matemática y Físicas, Universidad de Chile, Santiago, Chile
Search for more papers by this authorFelipe Valencia
Energy Center, Facultad de Ciencias Matemática y Físicas, Universidad de Chile, Santiago, Chile
Search for more papers by this authorPatricio Mendoza-Araya
Energy Center, Facultad de Ciencias Matemática y Físicas, Universidad de Chile, Santiago, Chile
DIE, Facultad de Ciencias Matemática y Físicas, Universidad de Chile, Santiago, Chile
Search for more papers by this authorLuis Gabriel Marín
DIELE, Facultad de Ingeniería, Universidad de los Andes, Bogotá, Colombia
Search for more papers by this authorFunding information: Ministerio de Ciencia, Tecnología e Innovación, Grant/Award Number: Scientific Program within the framework of the call; Colombia Scientific Program within the framework of the call Ecosistema Científico, Grant/Award Number: (Contract No. FP44842- 218-2018)
Summary
The Energy Management System (EMS) is a strong need for achieving cost-effective, reliable, and pollution-free operation of microgrids operating in isolated areas. Commonly, the EMS approaches use optimization and rolling-horizon predictions. However, the inclusion of very short-term predictions increases the complexity of the optimization, compromising its ability and reliability to operate online. In response to this problem, this paper proposes a rule-based EMS (RB-EMS) which uses neither optimization nor prediction horizons. Instead, the RB-EMS evaluates historical data, and very short-term predictions to calculate the setpoints of distributed energy resources, and schedulable loads in a cost-effective, reliable, and sustainable manner. As a form of self-regulation, the RB-EMS introduces the Reliability Index to calculate the maximum state of charge of the energy storage system. Given the speed imposed by the very short-term predictions, the RB-EMS also introduces a start-up manager for diesel units that present a dead time in their enlistment. The isolated ESUSCON-HUATACONDO microgrid was used as a testbed for performance validation. The work shows a first scenario comparing the RB-EMS against a rolling horizon EMS based on MILP optimization. A second scenario shows the energy management performance with 1 minute predictions. The better results obtained, and the computational simplicity of the RB-EMS allows propose it to achieve faster and more reliable energy management in other isolated microgrids.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
REFERENCES
- 1Parhizi S, Lotfi H, Khodaei A, Bahramirad S. State of the art in research on microgrids: a review. IEEE Access. 2015; 3: 890-925.
- 2Ton DT, Smith MA. The U.S. Department of Energy's microgrid initiative. Electr J. 2012; 25(8): 84-94.
10.1016/j.tej.2012.09.013 Google Scholar
- 3Jansen LL, Andreadou N, Papaioannou I, Marinopoulos A. Smart grid lab research in Europe and beyond. Int J Energy Res. 2020; 44(3): 1307-1336.
- 4Zia MF, Elbouchikhi E, Benbouzid M. Microgrids energy management systems: a critical review on methods, solutions, and prospects. Appl Energy. 2018; 222: 1033-1055.
- 5Rathor SK, Saxena D. Energy management system for smart grid: an overview and key issues. Int J Energy Res. 2020; 44(6): 4067-4109.
- 6Espín-Sarzosa D, Palma-Behnke R, Núñez-Mata O. Energy management systems for microgrids: main existing trends in centralized control architectures. Energies. 2020; 13(3): 547.
- 7Espina E, Llanos J, Burgos-Mellado C, Cárdenas-Dobson R, Martínez-Gómez M, Sáez D. Distributed control strategies for microgrids: an overview. IEEE Access. 2020; 8:193412–193448.
- 8Raya-Armenta JM, Bazmohammadi N, Avina-Cervantes JG, Sáez D, Vasquez JC, Guerrero JM. Energy management system optimization in islanded microgrids: an overview and future trends. Renewable and Sustainable Energy Reviews. 2021; 149:111327.
- 9Alam MS, Arefifar SA. Energy management in power distribution systems: review, classification, limitations and challenges. IEEE Access. 2019; 7:92979–93001.
- 10Rafique SF, Jianhua Z, Hanan M, Aslam W, Rehman AU, Khan ZW. Energy management system design and testing for smart buildings under uncertain generation (wind/photovoltaic) and demand. Tsinghua Sci Technol. 2018; 23(3): 254-265.
- 11Radosavljevi J, Jevti M, Klimenta D. Engineering optimization energy and operation management of a microgrid using particle swarm optimization. Eng Optim. 2016; 48(5): 811-830.
- 12Marzband M, Yousefnejad E, Sumper A, Domínguez-garcía JL. Electrical power and energy systems real time experimental implementation of optimum energy management system in standalone microgrid by using multi-layer ant colony optimization. Int J Electr Power Energy Syst. 2016; 75: 265-274.
- 13Liu Z, Zhang H, Dong J, Yu H. A prediction-based optimization strategy to balance the use of diesel generator and emergency battery in the microgrid. Int J Energy Res. 2020; 44(7): 5425-5440.
- 14Anglani N, Oriti G, Colombini M. Optimized energy management system to reduce fuel consumption in remote military microgrids. IEEE Trans Ind Appl. 2017; 53(6): 5777-5785.
- 15Comodi G, Giantomassi A, Severini M, et al. Multi-apartment residential microgrid with electrical and thermal storage devices : experimental analysis and simulation of energy management strategies. Appl Energy. 2014; 137: 854-866.
- 16Rezaee Jordehi A. An improved particle swarm optimisation for unit commitment in microgrids with battery energy storage systems considering battery degradation and uncertainties. Int J Energy Res. 2021; 45(1): 727-744.
- 17Trinklein EH, Parker GG, Robinett RD, Weaver WW, Member S. Toward online optimal power flow of a networked DC microgrid system. IEEE J Emerg Sel Top Power Electron. 2017; 5(3): 949-959.
- 18Elsied M, Oukaour A, Youssef T, Gualous H, Mohammed O. An advanced real time energy management system for microgrids. Energy. 2016; 114: 742-752.
- 19Nikmehr N, Najafi-ravadanegh S. Optimal operation of distributed generations in micro-grids under uncertainties in load and renewable power generation using heuristic algorithm. IET Renew. 2015; 9: 982-990.
- 20Manbachi M, Member GS, Ordonez M. AMI-based energy management for islanded AC / DC microgrids utilizing energy conservation and optimization. IEEE Trans Smart Grid. 2019; 10(1): 293-304.
- 21Deckmyn C, Van de Vyver J, Vandoorn TL, Meersman B, Desmet J, Vandevelde L. Day-ahead unit commitment model for microgrids. IET Gener Transm Distrib. 2016; 11(1): 1-9.
- 22Kumrai T, Ota K, Dong M, Sato K, Kishigami J. Optimising operation management for multi-micro-grids control. IET Cyber-Phys Syst: Theory Appl. 2017; 3(1): 24-33.
10.1049/iet-cps.2017.0079 Google Scholar
- 23Zuñiga Cortes FA, Caicedo Bravo EF, López Santiago DM. Gestión Óptima de la Potencia Eléctrica en una Microgrid Conectada, basada en el Algoritmo Genético para Optimización Multiobjetivo MOGA. Rev UIS Ing. 2017; 15(2): 17-33.
10.18273/revuin.v15n2-2016002 Google Scholar
- 24Coelho VN, Weiss Cohen M, Coelho IM, Liu N, Guimarães FG. Multi-agent systems applied for energy systems integration: state-of-the-art applications and trends in microgrids. Appl Energy. 2017; 187: 820-832.
- 25Dou C, Meng C, Yue W, Zhang B. Double-deck optimal schedule of micro-grid based on demand-side response. IET Renew Power Gener. 2019; 13(6): 847-855.
- 26López-Santiago DM, Caicedo EF. Optimal management of electric power in microgrids under a strategic multi-objective decision-making approach and operational proportional adjustment. IET Gener Transm Distrib. 2019; 13(19): 4473-4481.
- 27Kelly RL, Oriti G, Julian AL. Reducing fuel consumption at a remote Military Base. IEEE Electrif Mag. 2014; 1: 30-37.
10.1109/MELE.2013.2293182 Google Scholar
- 28Rahbar K, Xu J, Zhang R. Real-time energy storage management for renewable integration in microgrid: an off-line optimization approach. IEEE Trans Smart Grid. 2015; 6(1): 124-134.
- 29Palma-Behnke R, Benavides C, Lanas F, et al. A microgrid energy management system based on the rolling horizon strategy. IEEE Trans Smart Grid. 2013; 4(2): 996-1006.
- 30Valencia F, Sáez D, Collado J, Ávila F, Marquez A, Espinosa JJ. Robust energy management system based on interval fuzzy models. IEEE Trans Control Syst Technol. 2016; 24(1): 140-157.
- 31Inman RH, Pedro HTC, Coimbra CFM. Solar forecasting methods for renewable energy integration. Prog Energy Combust Sci. 2013; 39(6): 535-576.
- 32Arefifar SA, Ordonez M, Mohamed Y. Energy management in multi-microgrid systems — development and assessment. IEEE Trans Power Syst. 2016; 32(2): 1-1.
- 33Olivares DE, Lara JD, Canizares CA. Stochastic-predictive energy management system for isolated microgrids. IEEE Trans Smart Grid. 2015; 6(6): 1-9.
- 34Fazeli A, Sumner M, Johnson MC, Christopher E. Real-time deterministic power flow control through dispatch of distributed energy resources. IET Gener Transm Distrib. 2015; 9(16): 2724-2735.
- 35Elkazaz M, Sumner M, Naghiyev E, Pholboon S, Davies R, Thomas D. A hierarchical two-stage energy management for a home microgrid using model predictive and real-time controllers. Appl Energy. 2020; 269:115118.
- 36Marín LG, Sumner M, Muñoz-Carpintero D, et al. Hierarchical energy management system for microgrid operation based on robust model predictive control. Energies. 2019; 12(23): 1-19.
- 37Elkazaz M, Sumner M, Davies R, Pholboon S, Thomas D. Optimization based real-time home energy Management in the Presence of renewable energy and battery energy storage. Paper presented at: SEST 2019 - 2nd International Conference on Smart Energy Systems and Technologies, 2019.
- 38Kumar A, Deng Y, He X, Kumar P, Bansal RC. Energy management system controller for a rural microgrid. Journal Eng. 2017; 2017(13): 834-839.
10.1049/joe.2017.0447 Google Scholar
- 39Deng R, Luo F, Ranzi G, Qiu J. Real-time energy management system for public laundries with demand charge tariff. 2021.
- 40Faquir S, Yahyaouy A, Tairi H, Sabor J. A type-1 fuzzy logic algorithm to manage the flow of energy in a stand-alone PV/wind/battery hybrid system. Paper presented at: 2015 Intelligent Systems and Computer Vision (ISCV), 2015, pp. 1–6.
- 41Arcos-Aviles D, Pascual J, Marroyo L, Sanchis P, Guinjoan F. Fuzzy logic-based energy management system design for residential grid-connected microgrids. IEEE Trans Smart Grid. 2018; 9(2): 530-543.
- 42Roiné L, Therani K, Manjili YS, Jamshidi M. Microgrid energy management system using fuzzy logic control. Paper presented at: 2014 World Automation Congress (WAC), 2014, pp. 462–467.
- 43Vrajitoru D, Knight W. Practical Analysis of Algorithms. New York, NY; Springer; 2014.
10.1007/978-3-319-09888-3 Google Scholar
- 44Knudsen J, Hansen J, Annaswamy AM. A dynamic market mechanism for the integration of renewables and demand response. IEEE Trans Control Syst Technol. 2016; 24(3): 940-955.
- 45Palma-Behnke R, Ortiz D. A social SCADA approach for a renewable based microgrid—the Huatacondo project. Paper presented at: Power and Energy. 2011, pp. 1–7.
- 46Heymann B, Bonnans JF, Martinon P, Silva FJ, Lanas F, Jiménez-Estévez G. Continuous optimal control approaches to microgrid energy management. Energy Syst. 2018; 9(1): 59-77.
10.1007/s12667-016-0228-2 Google Scholar
- 47Muqeet HAU, Ahmad A. Optimal scheduling for campus prosumer microgrid considering price based demand response. IEEE Access. 2020; 8:71378–71394.
- 48Philip J, Jain C, Kant K, et al. Control and implementation of a standalone solar photovoltaic hybrid system. IEEE Trans Ind Appl. 2016; 52(4): 3472-3479.
- 49Nejabatkhah F. Optimal design and operation of a remote hybrid microgrid. CPSS Trans Power Electron Appl. 2018; 3(1): 3-13.
10.24295/CPSSTPEA.2018.00001 Google Scholar
- 50Cortés DM. ABC de la Ley de Cambio Climático, 2019.