Development and performance analysis of polybenzimidazole/boron nitride composite membranes for high-temperature PEM fuel cells
Dedar Emad Hussin
Faculty of Engineering, Chemical Engineering, Atilim University, Ankara, Turkey
Search for more papers by this authorYağmur Budak
Faculty of Engineering, Mechanical Engineering, Atilim University, Ankara, Turkey
Search for more papers by this authorCorresponding Author
Yılser Devrim
Faculty of Engineering, Energy Systems Engineering, Atilim University, Ankara, Turkey
Correspondence
Yılser Devrim, Faculty of Engineering, Energy Systems Engineering, Atilim University, 0686 Ankara, Turkey.
Email: [email protected]
Search for more papers by this authorDedar Emad Hussin
Faculty of Engineering, Chemical Engineering, Atilim University, Ankara, Turkey
Search for more papers by this authorYağmur Budak
Faculty of Engineering, Mechanical Engineering, Atilim University, Ankara, Turkey
Search for more papers by this authorCorresponding Author
Yılser Devrim
Faculty of Engineering, Energy Systems Engineering, Atilim University, Ankara, Turkey
Correspondence
Yılser Devrim, Faculty of Engineering, Energy Systems Engineering, Atilim University, 0686 Ankara, Turkey.
Email: [email protected]
Search for more papers by this authorSummary
In this research, polybenzimidazole/boron nitride (PBI/BN) based composite membranes have been prepared for high-temperature PEM fuel cell (HT-PEMFC). BN was preferred because of its superior thermal robustness, high chemical stability, non-conductor property, and high plasticizer characteristic. The loading of BN in the composite membrane was studied between 2.5 to 10 wt%. The composite membranes were characterized using TGA, DSC, XRD, SEM, mechanical tests, acid doping/leaching, and proton conductivity measurements. The highest conductivity of 0.260 S/cm was found for PBI/BN-2.5 membrane at 180°C. It has been determined that the PBI/BN-2.5 membrane has higher performance than the PBI membrane according to the HT-PEMFC tests performed with Hydrogen and dry air. The heightened HT-PEMFC performance can be ascribed to interactive effects between BN particles and the PBI polymer matrix. PBI/BN composite membranes show a good perspective in the high-temperature PEMFC applications.
REFERENCES
- 1Midilli A, Ay M, Dincer I, Rosen MA. On hydrogen and hydrogen energy strategies I: current status and needs. Renewable Sustainable Energy Rev. 2005; 9: 255-271. doi:10.1016/j.rser.2004.05.003
- 2Mf A. Design and manufacturing of a (PEMFC) Proton Exchange Membrane Fuel Cell. Great Britain: Coventry University; 2011.
- 3Edwards PP, Kuznetsov VL, David WIF. Hydrogen energy. Philos Trans R Soc A. 2007; 365: 1043-1056. doi:10.1098/rsta.2006.1965
- 4Qingfeng L, Hjuler HA, Bjerrum NJ. Phosphoric acid doped polybenzimidazole membranes: physiochemical characterization and fuel cell applications. J Appl Electrochem. 2001; 31: 773-779. doi:10.1023/A:1017558523354
- 5Lin B, Chu F, Yuan N, et al. Phosphoric acid doped polybenzimidazole/imidazolium-modified silsesquioxane hybrid proton conducting membranes for anhydrous proton exchange membrane application. J Power Sources. 2014; 252: 270-276. doi:10.1016/j.jpowsour.2013.11.102
- 6Özdemir Y, Özkan N, Devrim Y. Fabrication and characterization of cross-linked Polybenzimidazole based membranes for high temperature PEM fuel cells. Electrochim Acta. 2017; 245: 1-13. doi:10.1016/j.electacta.2017.05.111
- 7Kurdakova V, Quartarone E, Mustarelli P, Magistris A, Caponetti E, Saladino ML. PBI-based composite membranes for polymer fuel cells. J Power Sources. 2010; 195: 7765-7769. doi:10.1016/j.jpowsour.2009.09.064
- 8Kim AR, Gabunada JC, Yoo DJ. Amelioration in physicochemical properties and single cell performance of sulfonated poly(ether ether ketone) block copolymer composite membrane using sulfonated carbon nanotubes for intermediate humidity fuel cells. Int J Energy Res. 2019; 43: 2974-2989. doi:10.1002/er.4494
- 9Vinothkannan M, Kim AR, Ramakrishnan S, Yu YT, Yoo DJ. Advanced Nafion nanocomposite membrane embedded with unzipped and functionalized graphite nanofibers for high-temperature hydrogen-air fuel cell system: the impact of filler on power density, chemical durability and hydrogen permeability of membrane. Compos Part B Eng. 2021; 215:108828. doi:10.1016/j.compositesb.2021.108828
- 10Mohammed H, Al-Othman A, Nancarrow P, Elsayed Y, Tawalbeh M. Enhanced proton conduction in zirconium phosphate/ionic liquids materials for high-temperature fuel cells. Int J Hydrogen Energy. 2021; 46: 4857-4869. doi:10.1016/J.IJHYDENE.2019.09.118
- 11Caglayan DG, Sezgin B, Devrim Y, Eroglu I. Three-dimensional modeling of a high temperature polymer electrolyte membrane fuel cell at different operation temperatures. Int J Hydrogen Energy. 2016; 41: 10060-10070. doi:10.1016/j.ijhydene.2016.03.049
- 12Üregen N, Pehlivanoğlu K, Özdemir Y, Devrim Y. Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells. Int J Hydrogen Energy. 2017; 42: 2636-2647. doi:10.1016/j.ijhydene.2016.07.009
- 13Wainright JS, Wang J, Weng D, Savinell RF, Litt M. Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc. 1995; 142: 7-10. doi:10.1149/1.2044337
- 14Bocarsly AB, Niangar EV. Fuel cells-proton-exchange membrane fuel cells membranes: elevated temperature. Encyclopedia of Electrochemical Power Sources. Amsterdam, Netherlands: Elsevier; 2009: 724-733. doi:10.1016/B978-044452745-5.00232-X
10.1016/B978-044452745-5.00232-X Google Scholar
- 15Zhang M, June SM, Long TE. Principles of step-growth polymerization (Polycondensation and Polyaddition). Polym Sci. 2012; 5: 7-47. doi:10.1016/B978-0-444-53349-4.00131-X
- 16Dechnik J, Gascon J, Doonan CJ, Janiak C, Sumby CJ. Mixed-Matrix Membranes. Angew Chem. 2017; 56: 9292-9310. doi:10.1002/anie.201701109
- 17Ossiander T, Heinzl C, Gleich S, et al. Influence of the size and shape of silica nanoparticles on the properties and degradation of a PBI-based high temperature polymer electrolyte membrane. J Membr Sci. 2014; 454: 12-19. doi:10.1016/j.memsci.2013.12.004
- 18Suryani CYN, Lai JY, Liu YL. Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells. J Membr Sci. 2012; 403–404: 1-7. doi:10.1016/j.memsci.2012.01.043
- 19Lee KH, Chu JY, Kim AR, Yoo DJ. Effect of functionalized SiO2 toward proton conductivity of composite membranes for PEMFC application. Int J Energy Res. 2019; 43: 5333-5345. doi:10.1002/er.4610
- 20Ya KZ, Kumazawa K, Kawamura G, Muto H, Matsuda A. Cell performance enhancement with titania-doped polybenzimidazole based composite membrane in intermediate temperature fuel cell under anhydrous condition. J Cerma Soc Jpn. 2018; 126: 789-793. doi:10.2109/jcersj2.18084
- 21Singha S, Koyilapu R, Dana K, Jana T. Polybenzimidazole-clay Nanocomposite membrane for PEM fuel cell: effect of organomodifier structure. Polymer. 2019; 167: 13-20. doi:10.1016/j.polymer.2019.01.066
- 22Plackett D, Siu A, Li Q, et al. High-temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells. J Membr Sci. 2011; 383: 78-87. doi:10.1016/j.memsci.2011.08.038
- 23Xue C, Zou J, Sun Z, Wang F, Han K, Zhu H. Graphite oxide/functionalized graphene oxide and polybenzimidazole composite membranes for high temperature proton exchange membrane fuel cells. Int J Hydrogen Energy. 2014; 39: 7931-7939. doi:10.1016/j.ijhydene.2014.03.061
- 24Wang Y, Shi Z, Fang J, Xu H, Yin J. Graphene oxide/polybenzimidazole composites fabricated by a solvent-exchange method. Carbon. 2011; 49: 1199-1207. doi:10.1016/j.carbon.2010.11.036
- 25Üregen N, Pehlivanoğlu K, Özdemir Y, Devrim Y. Development of polybenzimidazole / graphene oxide composite membranes for high temperature PEM fuel cells. Int J Hydrogen Energy. 2016; 42: 1-12. doi:10.1016/j.ijhydene.2016.07.009
- 26Vinothkannan M, Kim AR, Gnana Kumar G, Yoo DJ. Sulfonated graphene oxide/Nafion composite membranes for high temperature and low humidity proton exchange membrane fuel cells. RSC Adv. 2018; 8: 7494-7508. doi:10.1039/c7ra12768e
- 27Al-Othman A, Nancarrow P, Tawalbeh M, et al. Novel composite membrane based on zirconium phosphate-ionic liquids for high temperature PEM fuel cells. Int J Hydrogen Energy. 2021; 46: 6100-6109. doi:10.1016/j.ijhydene.2020.02.112
- 28Ka'ki A, Alraeesi A, Al-Othman A, Tawalbeh M. Proton conduction of novel calcium phosphate nanocomposite membranes for high temperature PEM fuel cells applications. Int J Hydrogen Energy. 2021; 46: 30641-30657. doi:10.1016/j.ijhydene.2021.01.013
- 29Kim AR, Vinothkannan M, Song MH, Lee JY, Lee HK, Yoo DJ. Amine functionalized carbon nanotube (ACNT) filled in sulfonated poly(ether ether ketone) membrane: effects of ACNT in improving polymer electrolyte fuel cell performance under reduced relative humidity. Compos Part B Eng. 2020; 188:107890. doi:10.1016/j.compositesb.2020.107890
- 30Zaidi SMJ. Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate. Electrochim Acta. 2005; 50: 4771-4777. doi:10.1016/j.electacta.2005.02.027
- 31Oh KH, Lee D, Choo MJ, et al. Enhanced durability of polymer electrolyte membrane fuel cells by functionalized 2D boron nitride nanoflakes. ACS Appl Mater Interfaces. 2014; 6: 7751-7758. doi:10.1021/am5010317
- 32Georgantzinos SK, Kariotis K, Giannopoulos GI, Anifantis NK. Mechanical properties of hexagonal boron nitride monolayers: finite element and analytical predictions. Proc Inst Mech Eng Part C. 2020; 234: 4126-4135. doi:10.1177/0954406220919461
- 33Song L, Ci L, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010; 10: 3209-3215. doi:10.1021/nl1022139
- 34Akel M, Celik SU, Bozkurt A, Ata A. Nano hexagonal boron nitride–nafion composite membranes for proton exchange membrane fuel cells. Polym Compos. 2014; 37: 422-428.
- 35Shogbon CB, Brousseau J, Zhang H, et al. Determination of the molecular parameters and studies of the chain conformation of polybenzimidazole in DMAc/LiCl. Macromolecules. 2006; 39(26): 9409-9418.
- 36Ergun D, Devrim Y, Bac N, Eroglu I. Phosphoric acid doped polybenzimidazole membrane for high temperature PEM fuel cell. J Appl Polym Sci. 2012; 124: E267-E277. doi:10.1002/app.36507
- 37Bae J, Honma I, Murata M, Yamamoto T, Rikukawa M, Ogata N. Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells. Solid State Ionics. 2002; 147: 189-194.
- 38Devrim Y. Fabrication and performance evaluation of hybrid membrane based on a sulfonated polyphenyl sulfone/phosphotungstic acid/silica for proton exchange membrane fuel cell at low humidity conditions. Electrochim Acta. 2014; 146: 741-751. doi:10.1016/j.electacta.2014.08.131
- 39Devrim Y. Preparation and testing of nafion/titanium dioxide nanocomposite membrane electrode assembly by ultrasonic coating technique. J Appl Polym Sci. 2014; 131: 1-10. doi:10.1002/app.40541
- 40Bhavsar RS, Nahire SB, Kale MS, et al. Polybenzimidazoles based on 3,3′-diaminobenzidine and aliphatic dicarboxylic acids: synthesis and evaluation of physicochemical properties toward their applicability as proton exchange and gas separation membrane material. J Appl Polym Sci. 2011; 120: 1090-1099. doi:10.1002/app.33246
- 41Ergun D, Devrim Y, Bac N, Eroglu I. Phosphoric acid doped polybenzimidazole membrane for high temperature PEM fuel cell. J Appl Polym Sci. 2012; 124: E267-E277. doi:10.1002/app.36507
- 42Öner M, Kızıl G, Keskin G, Pochat-Bohatier C, Bechelany M. The effect of boron nitride on the thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Nanomaterials. 2018; 8: 940. doi:10.3390/nano8110940
- 43Murat Soydan A, Akel M, Akdeniz R. Production and characterization of new generation PEMFC nanocomposite membranes containing nano boron. J Inst Sci Technol. 2019; 9(1): 20-29. doi:10.21597/jist.431523
10.21597/jist.431523 Google Scholar
- 44Lee J-W, Bahadar Khan S, Akhtar K, et al. Fabrication of composite membrane based on Silicotungstic Heteropolyacid doped Polybenzimidazole for high temperature PEMFC. Int J Electrochem Sci. 2012; 7: 6276-6288.
- 45Aili D, Cleemann LN, Li QN, Jensen JO, Christensen E, Bjerrum NJ. Thermal curing of PBI membranes for high temperature PEM fuel cells. J Mater Chem. 2012; 22: 5444-5453. doi:10.1039/c2jm14774b
- 46Huang C, Chen C, Ye X, et al. Stable colloidal boron nitride nanosheet dispersion and its potential application in catalysis. J Mater Chem A. 2013; 1:12192. doi:10.1039/c3ta12231j
- 47Matović B, Luković J, Nikolić M, et al. Synthesis and characterization of nanocrystaline hexagonal boron nitride powders: XRD and luminescence properties. Ceram Int. 2016; 42: 16655-16658. doi:10.1016/J.CERAMINT.2016.07.096
- 48Moradi M, Moheb A, Javanbakht M, Hooshyari K. Experimental study and modeling of proton conductivity of phosphoric acid doped PBI-Fe2TiO5 nanocomposite membranes for using in high temperature proton exchange membrane fuel cell (HT-PEMFC). Int J Hydrogen Energy. 2016; 41: 2896-2910. doi:10.1016/j.ijhydene.2015.12.100
- 49Yadav V, Kulshrestha V. Boron nitride: a promising material for proton exchange membranes for energy applications. Nanoscale. 2019; 11: 12755-12773. 10.1039/C9NR03094H
- 50Pu H, Meyer WH, Wegner G. Proton transport in polybenzimidazole blended with H3PO4 or H2SO4. J Polym Sci B Polym Phys. 2002; 40: 663-669. doi:10.1002/polb.10132
- 51Ma Y, Wainright JS, Litt MH, et al. Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells service conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. J Electrochem Soc. 2004; 151:A8. doi:10.1149/1.1630037
- 52Escorihuela J, Sahuquillo Ó, Garcí A-Bernabé A, Gimé Nez E, Compañ V. Phosphoric acid doped polybenzimidazole (PBI)/zeolitic imidazolate framework composite membranes with significantly enhanced proton conductivity under low humidity conditions. Nanomaterials. 2018; 8(10): 775.
- 53Mahato N, Jang H, Dhyani A, Cho S. Recent Progress in conducting polymers for hydrogen storage and fuel cell applications. Polymers. 2020; 12: 2480. doi:10.3390/POLYM12112480
- 54Kulkarni M, Potrekar R, Kulkarni RA, Vernekar SP. Synthesis and characterization of novel polybenzimidazoles bearing pendant phenoxyamine groups. J Polym Sci A Polym Chem. 2008; 46: 5776-5793. doi:10.1002/pola.22892
- 55Ghosh S, Maity S, Jana T. Polybenzimidazole/silica nanocomposites: organic-inorganic hybrid membranes for PEM fuel cell. J Mater Chem. 2011; 21: 14897-14906. doi:10.1039/c1jm12169c
- 56Akel M, Ünügür Çelik S, Bozkurt A, Ata A. Nano hexagonal boron nitride-Nafion composite membranes for proton exchange membrane fuel cells. Polym Compos. 2016; 37: 422-428. doi:10.1002/pc.23195
- 57Pye DG, Hoehn HH, Panar M. Measurement of gas permeability of polymers I. Permeabilities in constant volume/variable pressure apparatus. J Appl Polym Sci. 1976; 20: 1921-1931. doi:10.1002/APP.1976.070200719
- 58Vilekar SA, Datta R. The effect of hydrogen crossover on open-circuit voltage in polymer electrolyte membrane fuel cells. J Power Sources. 2010; 195: 2241-2247. doi:10.1016/j.jpowsour.2009.10.023
- 59Yoon SI, Seo D, Kim G, et al. AA′-stacked trilayer hexagonal boron nitride membrane for proton exchange membrane fuel cells. ACS Nano. 2018; 12: 10764-10771.