Analytical study of over-voltages in alkaline electrolysis and their parametric dependencies through a multi-physical model
Corresponding Author
Gregory De Dominici
Expleo Group, South-East R&D department, Hub'Side Cap Horizon, Vitrolles, France
Correspondence
Gregory De Dominici, Expleo Group, South-East R&D department, Hub'Side Cap Horizon, 2 Impasse de Chasles, 13127, Vitrolles, France.
Email: [email protected]
Search for more papers by this authorBertrand Gabriel
Expleo Group, South-East R&D department, Hub'Side Cap Horizon, Vitrolles, France
Search for more papers by this authorCorresponding Author
Gregory De Dominici
Expleo Group, South-East R&D department, Hub'Side Cap Horizon, Vitrolles, France
Correspondence
Gregory De Dominici, Expleo Group, South-East R&D department, Hub'Side Cap Horizon, 2 Impasse de Chasles, 13127, Vitrolles, France.
Email: [email protected]
Search for more papers by this authorBertrand Gabriel
Expleo Group, South-East R&D department, Hub'Side Cap Horizon, Vitrolles, France
Search for more papers by this authorFunding information: Expleo Group
Summary
This work is an attempt to develop a model of alkaline electrolysis to compare AEM and conventional electrolysis cells performances over several operating conditions, including a change in electrolytes' composition for hydrogen production. It shows that over-potential behaves differently with whether an AEM/conventional electrolyser is used, or NaOH/KOH electrolyte is used. This model of the electrolytic cell will be a benchmark for developing a further complete representation for alkaline electrolysis which can be used for simulation as well for developing control algorithms-controlled hydrogen production.
CONFLICT OF INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
REFERENCES
- 1Ivy J. Summary of electrolytic hydrogen production: milestone completion report. National Renewable Energy Lab, 2004.
- 2Kodama T, Gokon N. Thermochemical cycles for high-temperature solar hydrogen production. Chem Rev. 2007; 107: 4048-4077.
- 3David M, Ocampo-Martinez C, Sanchez-Pena R. Advances in alkaline water electrolysers: a review. J Energy Storage. 2019; 23: 392-403.
- 4Benzinger JB, Satterfeld MB, Hogarth WHJ, Nehlsen JP, Kevrekidis I. The power performance curve for engineering analysis of fuel cells. J Power Sources. 2006; 155: 272-285.
- 5Holladay JD, Hu J, King DL, Wang L. An overview of hydrogen production technologies. Catal Today. 2009; 139: 244-260.
- 6Zeng K, Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci. 2010; 336: 307-326.
- 7Carmo M, Fritz DL, Mergel J, Stolten D. A comprenhensive review on PEM water electrolysis. Int J Hydrog Energy. 2013; 38: 4901-4934.
- 8Rozain C. Développement de nouveaux matériaux d'élecrodes pour la production d'hydrogène par électrolyse de l'eau. Orsay, France: Université de Paris - Sud - Paris XI; 2013.
- 9Nguyen T, Abdin Z, Holm T, Merida W. Grid-connected hydrogen production via large-scale water electrolysis. Energy Convers Manag. 2019; 200:112108.
- 10Trinke P, Haug P, Brauns J, Bensmann B, Hanke-Rauschenbach R, Turek T. Hydrogen crossover in PEM and alkaline water electrolysis: mechanisms, direct comparison and mitigation strategies. J Electrochem Soc. 2018; 165: F502-F513.
- 11Leng Y, Chen G, Mendoza AJ, Tighe TB, Hickner MA, Wang C. Solid-state water electrolysis with an alkaline membrane. J Am Chem Soc. 2012; 134: 9054-9057.
- 12Olivier P, Bourasseau C, Bouamama B. Low-temperature electrolysis system modelling: a review. Renew Sust Energ Rev. 2017; 78: 580-300.
- 13Pushkareva IV, Pushkarev AS, Grigoriev SA, Modisha P, Bessarabov D. Comparative study of anion exchange membranes for low-cost water electrolysis. Int J Hydrog Energy. 2019; 45: 70-79.
- 14Ayers KE, Anderson EB, Capuano CB, Niedzwiecki M, Hickner MA, Wang C. Characterization of anion exchange membrane technology for low cost electrolysis. ECS Trans. 2013; 45: 121-130.
10.1149/04523.0121ecst Google Scholar
- 15Ayers KE, Danilovic N, Ouimet R, Carmo M, Pivovar B, Bornstein M. Perspectives on low-temperature electrolysis and potential for renewable hydrogen at scale. Annu Rev Chem Biomol Eng. 2019; 10: 219-239.
- 16Masel RI, Liu Z, Sajjad S. Anion exchange membrane electrolyzers showing 1 a/cm2 at less than 2 V. ECS Trans. 2016; 75: 1143-1146.
- 17Xiao L, Zhang S, Pan J, Yang C, He M, Zhuang L. First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy Environ Sci. 2012; 5: 7869-7871.
- 18Vincent I, Lee EC, Kim H. Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production. Sci Rep. 2021; 11: 293.
- 19Vincent I, Bessarabov D. Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew Sust Energ Rev. 2018; 81: 1690-1704.
- 20Zhang K, McDonald MB, Genina IEA, Hammond P. A highly conductive and mechanically robust HO− conducting membrane for alkaline water electrolysis. Chem Mater. 2018; 30: 20-30.
- 21Manolova M. Development and testing of an anion exchange membrane electrolyser. Int J Hydrog Energy. 2015; 40: 62-69.
- 22Olivier P, Bourasseau C, Bouamama B. Dynamic and multi-physics PEM electrolysis system modelling. Int J Hydrog Energy. 2015; 6: 4178-4183.
- 23Han B, SMS III, Mo J, Zhang F. Electrochemical performance modelling of a proton exchange membrane electrolyser cell for hydrogen energy. Int J Hydrog Energy. 2015; 40: 7006-7016.
- 24Olivier R. Modélisation et caractérisation de pile a combustible et electrolyseur PEM. PhD, 2011.
- 25Rabih S. Contribution à la modélisation de systèmes réversibles de type électrolyseur et pile à hydrogène en vue de leur couplage aux générateurs photovoltïques. PhD, 2008.
- 26Abdol Rahim AH, Tijani AS, Kamarudin SK, Hanapi S. An overview of polymer electrolyte membrane electrolyser for hydrogen production: modelling and mass transport. J Power Sources. 2016; 399: 56-65.
- 27Onda K, Murakami T, Hikosaka T, Kobayashi M, Notu R, Ito K. Performance analysis of polymer-electrolyte water electrolysis cell at a small-unit test cell and performance prediction of large stacked cell. J Electrochem Soc. 2002; 149: A1069-A1078.
- 28Chandersris M, Médeau V, Guillet N, Chelghoum S, Thoby D, Fouda-Onana F. Membrane degradation in PEM water electrolyser: numerical modelling and experimental evidence of the influence of temperature and current density. Int J Hydrog Energy. 2015; 40: 1353-1366.
- 29De Groot M, Vreman A. Ohmic resistance in zero gap alkaline electrolysis with a Zirfon diaphragm. Electrochem Acta. 2021; 361: 84-96.
- 30Holmes-Gentle I, Tembhurne S, Suter C, Haussener S. Dynamic system modelling of thermally-integrated concentrated PV-electrolysis. Int J Hydrog Energy. 2021; 46: 66-81.
- 31Hug W, Bussmann H, Brinner A. Intermittent operation and operation modelling of an alkaline electrolyzer. Int J Hydrog Energy. 1993; 18: 973-977.
- 32Le Bideau D, Mandin P, Benbouzid M, Kim M, Sellier M. Eulerian two-fluid model of alkaline water electrolysis form hydrogen production. Energies. 2020; 13: 3394.
- 33Ulleberg O, Morner S. TRNSYS simulation models for solar hydrogen systems. Sol Energy. 1997; 59: 271-279.
- 34Wei J, Hao D, Shili Z, Hongbin X, Yi Z. Comparison of the oxygen reduction eaction between NaOH and KOH solutions on a Pt electrode: the electrolyte-dependent effect. J Phys Chem B. 2010; 114: 6542-6548.
- 35Sabahi N, Razfar M. Investigating the effect of mixed alkaline electrolyte (NaOH + KOH) on the improvement of machining efficiency in 2D electrochemical discharge machining (ECDM). Int J Adv Manuf Technol. 2018; 95: 643-657.
- 36Razmjooei F. Elucidating the performance limitations of alkaline electrolyte membrane electrolysis: dominance of anion concentration in membrane electrode assembly. ChemElectroChem. 2020; 7: 51-60.
- 37Lim A, Kim HJ, Henkensmeier D, et al. A study on electrode fabrication and operation variables affecting the performance of anion exchange membrane water electrolysis. J Ind Eng Chem. 2019; 76: 410-418.
- 38Hammoudi M, Henao C, Agbossou K, Dubé Y, Doumbia M. New multi-physics approach for modelling and design of alkaline electrolyzers. Int J Hydrog Energy. 2012; 37:13895–13913.
- 39LeRoy RL, Bowen CT, LeRoy D. The thermodynamics of aqueous water electrolysis. J Electrochem Soc. 1980; 127: 1954-1962.
- 40Thampan T, Sanjiv M, Jingxin Z, Ravindra D. PEM fuel cell as a membrane reactor. Catal Today. 2001; 67: 15-32.
- 41Atkins P. The elements of physical chemistry. New York, NY: Oxford University Press; 1992.
- 42Chen Y, Mojica F, Li G, Chuang P. Experimental study and analytical modeling of an alkaline water electrolysis cell. Int J Energy Res. 2017; 10: 1-9.
- 43Kibria MF, Mridha MS, Khan A. Electrochemical studies of a nickel electrode for the hydrogen evolution reaction. Int J Hydrog Energy. 1995; 20: 435-440.
- 44Kibria MF, Mridha MS, Khan A. Electrochemical studies of a nickel electrode for the oxygen evolution reaction. Int J Hydrog Energy. 1996; 21: 179-182.
- 45Huot J. Hydrogen evolution and interface phenomena on a nickel cathode in 30 w/o KOH kinetics parameters and electrode impedance between 303 and 363 K. Electrochem Soc. 1989; 136: 1933-1939.
- 46Miles MH, Kissel G, Lu PWT, Srinivasan S. Effect of temperature on electrode kinetic parameters for hydrogen and oxygen evolution reactions on nickel electrodes in alkaline solutions. Electrochem Soc. 1976; 123: 332-336.
- 47Vogt H, Balzer R. The bubble coverage of gas-evolving electrodes in stagnant electrolytes. Electrochem Acta. 2005; 50: 2073-2079.
- 48Piontelli R, Mazza B, Pedeferri P, Tognoni A. Richerche sullo sviluppo elettridico di gas e sugli effeti anomali che lo accompagnano. Electrochim Metall. 1967; 2: 257-287.
- 49Janssen LJJ, Van Stralen S. Bubble behaviour on and mass transfer to an oxygen-evolving transparent nickel electrode in alkaline solution. Electrochem Acta. 1981; 8: 1011-1022.
- 50Vogt H. The quantities affecting the bubble coverage of gas-evolving electrodes. Electrochem Acta. 2017; 235: 495-499.
- 51Abdin Z, Webb CJ, Gray E. Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell. Int J Hydrog Energy. 2015; 40:13243–13257.
- 52Wüthrich R, Comninellis C, Bleuler H. Bubble evolution on vertical electrodes under extreme current densities. Electrochem Acta. 2005; 50: 5242-5246.
- 53García-Valverde R, Espinosa J, Urbina N. A simple PEM water electrolyser model and experimental validation. Int J Hydrog Energy. 2012; 37: 1927-1938.
- 54Huiyong K, Mikyoung P, Soon L. One-dimensional dynamic modeling of a high-pressure water electrolysis system for hydrogen production. Int J Hydrog Energy. 2013; 38: 2596-2609.
- 55Bonghwan L, Kiwon P, Hyung-Man K. Dynamic simulation of PEM water electrolysis and comparison with experiments. Int J Electrochem. 2012; 8: 235-248.
- 56Agbli KS, Péra R, Hissel MC, Rallières D, Turpin O, Doumbia C. Multiphysics simulation of a PEM electrolyser: energetic, macroscopic representation approach. Int J Hydrog Energy. 2011; 36: 382-398.
- 57Le Bideau D, Mandin P, Benbouzid M, Kim M, Sellier M. Review of necessary thermophysical properties and their sensivities with temperature and electrolyte mass fractions for alkaline water electrolysis multiphysics modelling. Int J Hydrog Energy. 2019; 44: 4553-4569.
- 58See DM, White R. Temperature and concentration dependence of the specific conductivity of concentrated solutions of potassium hydroxide. J Chem Eng Data. 1997; 42: 1266-1268.
- 59An L, Zhao TS, Chai ZH, Tan P, Zeng P. Mathematical modeling of an anion-exchange membrane water electrolyzer for hydrogen production. Int J Hydrog Energy. 2014; 39:19869–19876.
- 60Machado BS, Chakraborty N, Das P. Influences of flow direction, temperature and relative humidity on the performance ofa representative anion exchange membrane fuel cell: a computational analysis. Int J Hydrog Energy. 2016; 12: 1-14.
- 61Park JE, Kang SY, Oh SH, et al. High-performance anion exchange membrane water electrolysis. Electrochim Acta. 2019; 295: 99-106.
- 62Bock R, Karoliussen H, Seland F, et al. Measuring the thermal conductivity of membrane and porous transport layer in proton and anion exchange membrane water electrolysers for temperature distribution modelling. Int J Hydrog Energy. 2020; 45: 1236-1254.
- 63Dekel D. Review of cell performance in anion exchange membrane fuel cells. Power Sources. 2017; 375: 158-169.
- 64Kélouwani S, Agbossou K, Chahine R. Model for energy conversion in renewable energy system with hydrogen storage. J Power Sources. 2005; 140: 392-399.
- 65Ganley J. High temperature and pressure alkaline electrolyser. Int J Hydrog Energy. 2009; 31: 3604-3611.
- 66Zarghami A, Deen NG, Vreman A. CFD modeling of multiphase flow in an alkaline water electrolyzer. Chem Eng Sci. 2020; 227:115926.
- 67Pletcher D, Li X. Prospects for alkaline zero gap water electrolysers for hydrogen production. Int J Hydrog Energy. 2011; 36:15089–15104.
- 68Kraglund M. Zero-gap alkaline water electrolysis using ion-solvating polymer electrolyte membranes at reduced KOH concentrations. Int J Electrochem Soc. 2016; 163: F3125-F3131.
- 69An L, Zhao TS, Li YS, Wu Q. Charge carriers in alkaline direct oxidation fuel cells. Energy Environ Sci. 2012; 5: 7536-7538.
- 70Vincent I, Kruger A, Bessarabov D. Hydrogen production by water electrolysis with an ultrathin anion-exchange membrane (AEM). Int J Electrochem Sci. 2018; 13:11347–11358.
- 71Ito H, Kawaguchi N, Someya S, et al. Experimental investigation of electrolytic solution for anion exchange membrane water electrolysis. Int J Hydrog Energy. 2018; 143: 1-10.
- 72Roy A, Watson S, Infield D. Comparison of electrical energy efficiency of atmospheric and high-pressure electrolysers. Int J Hydrog Energy. 2006; 31: 1964-1979.
- 73Tjaden B, Cooper SJ, Brett DJL, Kramer D, Shearing P. On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems. Curr Opin Chem Eng. 2016; 12: 44-51.
- 74Tranter TG, Gostick JT, Gale W. Pore network modelling of compressed fuel cell components with OpenPNM. Fuel Cells. 2016; 16: 504-515.
- 75Balej J. Water vapour partial pressures and water activities in potassium and sodium hydroxide solutions over wide concentration and temperature ranges. Int J Hydrog Energy. 1984; 10: 233-243.